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Abstract

This paper deals with nonoscillation problem about the non-autonomous linear difference
system

xn = Anxn−1, n= 1,2, . . . ,

whereAn is a 2×2 variable matrix that is nonsingular forn∈ N. In the special case that
A is a constant matrix, it is well-known that all non-trivial solutions are nonoscillatory
if and only if all eigenvalues ofA are positive real numbers; namely, detA > 0, trA > 0
and detA/(trA)2 ≤ 1/4. The well-known result can be said to be an analogy of ordinary
differential equations. The results obtained in this paper extend this analogy result. In
other words, this paper clarifies the distinction between difference equations and ordinary
differential equations. Our results are explained with some specific examples. In addition,
figures are attached to facilitate understanding of those examples.
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1. Introduction

We consider the second-order linear time-variant system

xn = Anxn−1, n= 1,2, . . . , (1.1)

where

xn =

(
xn

yn

)
and An =

(
an bn

cn dn

)
in which the componentsxn andyn and the coefficientsan, bn, cn anddn are real numbers.
It is always assumed that the matrixAn is nonsingular forn∈N. Needless to say, equation
(1.1) has the trivial solution{xn}; that is,(xn,yn) = (0,0) for n∈N. A non-trivial solution
{xn} of (1.1) is said to beoscillatory with respect to the first(resp.,second) componentif,
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for everyn∈N there exists anm≥ nsuch thatxmxm+1≤ 0 (resp.,ymym+1≤ 0). Otherwise,
it is said to benonoscillatory with respect to the first(or second) component. Hence, if a
non-trivial solution{xn} of (1.1) is nonoscillatory with respect to the first (resp., second)
component, then there exists anm∈ N such thatxn > 0 for n ≥ m or xn < 0 for n ≥ m
(resp.,yn > 0 for n≥ m or yn < 0 for n≥ m). It is clear that if{xn} is a solution of (1.1),
then{−xn} is also a solution of (1.1). Hence, we can assume without loss of generality
that a non-trivial solution{xn} of (1.1) which is nonoscillatory with respect to the first
(resp., second) component satisfy thatxn (resp.,yn) is positive for all largen. A non-trivial
solution{xn} of (1.1) is said to benonoscillatoryif it is nonoscillatory with respect to the
first and second components.

The purpose of this paper is to give sufficient conditions for all non-trivial solutions
of (1.1) to be nonoscillatory with respect to the first (or second) component. Of course,
the coefficients of the matrixAn determine whether or not all non-trivial solutions of (1.1)
are nonoscillatory with respect to the first component.

In the special case that

An ≡ A=

(
a b
c d

)
,

wherea, b, c and d are real constants, system (1.1) is equivalent to the second-order
autonomous linear equations

xn+1+(detA)xn−1 = (trA)xn (1.2)

and
yn+1+(detA)yn−1 = (trA)yn (1.3)

for n∈ N. It is clear that if detA< 0, then the characteristic equation

λ 2− (trA)λ +detA= 0

has two real roots of opposite signs:λ1 < 0< λ2. Hence, two sequences{λ n
1} and{λ n

2}
are an oscillatory solution and a nonoscillatory solution of (1.2) (or (1.3)), in other words,
oscillatory solutions and nonoscillatory solutions coexist in equation (1.2) (or (1.3)) in the
meaning of the definition described above. If trA≤ 0< detA, then all non-trivial solutions
of (1.2) (or (1.3)) are oscillatory. If detA> 0 and trA> 0, then all non-trivial solutions of
(1.2) (or (1.3)) are nonoscillatory if and only if detA≤ (trA)2/4. Thus, under the above-
mentioned definitions about oscillation and nonoscillation, Sturm’s separation theorem
holds when detA> 0, but it fails to hold when detA< 0.

Remark 1.1. Equations (1.2) and (1.3) are contained in the self-adjoint second-order dif-
ference equation

∆(en∆xn−1)+ fnxn = 0

with en ̸= 0. Note thaten is not necessarily of one sign (for example, see [2]). The follow-
ing definitions different from the above are often made for oscillation and nonoscillation
(refer to [4, 6, 16, 17]). An interval(m,m+1] is said to contain ageneralized zeroof a
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solution{xn} if xm ̸= 0 andemxmxm+1 ≤ 0. A non-trivial solution is calledoscillatoryif it
has infinitely many generalized zeros. In the opposite case, a non-trivial solution is called
nonoscillatory. It is known that the so-called Reid roundabout theorem, Sturm’s compar-
ison theorem, and Sturm’s separation theorem hold under the definition focused on the
sign ofenxnxn+1. Hence, all non-trivial solutions are either oscillatory or nonoscillatory.
However, these pieces of information are different topics from this paper and will not be
used hereafter.

Let us get back to the subject. If there exists a subsequence{nk} such thatbnk = 0,
then it follows from system (1.1) thatxnk = ankxnk−1. Hence, it is clear that ifank ≤ 0,
thenxnk−1 andxnk do not have the same signs. This means thatan has to be positive for all
sufficiently largen∈ N in order for all non-trivial solutions of (1.1) to be nonoscillatory
with respect to the first component. In other words, when discussing whether all non-
trivial solutions of (1.1) are nonoscillatory with respect to the first component or not, it
is important to analyze the asymptotic behavior of solutions whenbn is not zero. Since
nonoscillation for the second component is also the same situation as that for the first
component, we assume thatbn andcn are not zero for all sufficiently largen∈ N in this
paper.

From consideration about the case thatAn is a 2×2 constant matrix, to achieve our
purpose, it is natural to assume that

detAn > 0, (1.4)

an+1bn+bn+1dn

bn
> 0, (1.5)

and
ancn+1+cndn+1

cn
> 0 (1.6)

for all sufficiently largen∈ N. We can rewrite system (1.1) as

xn+1+
bn+1

bn
(detAn)xn−1 =

an+1bn+bn+1dn

bn
xn (1.7)

and

yn+1+
cn+1

cn
(detAn)yn−1 =

ancn+1+cndn+1

cn
yn (1.8)

for all sufficiently largen∈ N.
Hooker et al. [10, 11, 14] have considered the second-order linear difference equation

γnxn+1+ γn−1xn−1 = βnxn, n= 1,2, . . . , (1.9)

and presented some conditions which guarantee that all non-trivial solutions of (1.9) are
nonoscillatory (they also gave sufficient conditions for all non-trivial solutions of (1.9) to
be oscillatory). Their typical and fundamental result on nonoscillation is as follows (see
also the books [1, Chap. 6], [5, Chap. 7], [12, Chap. 6]).
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Theorem A. If βnγn > 0 andγ2
n/(βnβn+1)≤ 1/4 for all sufficiently large n∈N, then all

non-trivial solutions of(1.9)are nonoscillatory.

The constant 1/4 often appears as a critical value that divides oscillation and nonoscil-
lation of solutions of second-order linear differential equations (for example, see [9, 13,
15, 19]). This critical value is called anoscillation constant. We can also find researches
on the oscillation constant of second-order difference equations in [3, 7, 8, 18] and the
references cited therein. In that sense, it is not too much to say that Theorem A is an
analogy of results of ordinary differential equations.

Using Theorem A, we obtain the following results (see Section 2 for the proof).

Theorem B. Assume(1.4)and (1.5). If bn/bn+1 > 0 and

bnbn+2detAn+1

(an+1bn+bn+1dn)(an+2bn+1+bn+2dn+1)
≤ 1

4

for n sufficiently large, then all non-trivial solutions of(1.1) are nonoscillatory with re-
spect to the first component.

Theorem C. Assume(1.4)and (1.6). If cn/cn+1 > 0 and

cncn+2detAn+1

(ancn+1+cndn+1)(an+1cn+2+cn+1dn+2)
≤ 1

4

for n sufficiently large, then all non-trivial solutions of(1.1) are nonoscillatory with re-
spect to the second component.

If An ≡ A, then

bnbn+2detAn+1

(an+1bn+bn+1dn)(an+2bn+1+bn+2dn+1)

=
detA
(trA)2 =

cncn+2detAn+1

(ancn+1+cndn+1)(an+1cn+2+cn+1dn+2)
.

Hence, all non-trivial solutions of (1.1) are nonoscillatory with respect to the first compo-
nent if and only if those are nonoscillatory with respect to the second component.

In this paper, we would like to clarify a distinction between difference equations and
ordinary differential equations. For simplicity, let

qn =
bnbn+2detAn+1

(an+1bn+bn+1dn)(an+2bn+1+bn+2dn+1)

and

rn =
cncn+2detAn+1

(ancn+1+cndn+1)(an+1cn+2+cn+1dn+2)
.
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We can notice that two positive sequences{qn} and{rn} play important roles in Theorems
B and C, respectively. Theorems B and C demand that each term of the sequences is less
than or equal to 1/4. However, it is thought that this demand is very strong. To weaken
the condition that the sequences should satisfy, we pay our attention to a weighted sum of
two adjacent terms of the sequences.

We choose anN ∈ N arbitrarily. Let pi (1≤ i ≤ N) be any real number that is larger
than 1 and letp∗i be the conjugate number ofpi ; namely,

1
pi
+

1
p∗i

= 1. (1.10)

Thenp∗i is also greater than 1. We regardpN+1 asp1. Then we have the following results.

Theorem 1.1. Assume(1.4)and (1.5). Suppose that bn/bn+1 > 0 for n sufficiently large,
and

p∗i q2N(k−1)+2i−1+ pi+1q2N(k−1)+2i ≤ 1 (1.11)

for i = 1,2, . . . ,N and k sufficiently large. Then all non-trivial solutions of(1.1) are
nonoscillatory with respect to the first component.

Theorem 1.2. Assume(1.4)and (1.6). Suppose that cn/cn+1 > 0 for n sufficiently large,
and

p∗i r2N(k−1)+2i−1+ pi+1r2N(k−1)+2i ≤ 1 (1.12)

for i = 1,2, . . . ,N and k sufficiently large. Then all non-trivial solutions of(1.1) are
nonoscillatory with respect to the second component.

To compare Theorems 1.1 and 1.2 with Theorems B and C, respectively, we choose 1
asN ∈ N. Let p1 = p∗1 = 2. Then the following corollaries hold.

Corollary 1.3. Assume(1.4)and(1.5).Suppose that bn/bn+1 > 0 for n sufficiently large,
and

2q2k−1+2q2k ≤ 1

for k sufficiently large. Then all non-trivial solutions of(1.1) are nonoscillatory with
respect to the first component.

Corollary 1.4. Assume(1.4)and(1.6).Suppose that cn/cn+1 > 0 for n sufficiently large,
and

2r2k−1+2r2k ≤ 1

for k sufficiently large. Then all non-trivial solutions of(1.1) are nonoscillatory with
respect to the second component.

Although Corollary 1.3 (or Corollary 1.4) has a pretty simple form, it contains Theo-
rem B (or Theorem C) completely.
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2. Transforming from system (1.1) to equation (1.9)

As was mentioned in Section 1, system (1.1) is equivalent to equation (1.7). Moreover,
equation (1.7) is transformed into equation (1.9) with

βn =
(an+1bn+bn+1dn)detA1

bnbn+1∏n
j=1detA j

and γn =
detA1

bn+1∏n
j=1detA j

.

Here, we regard∏0
j=1detA j as 1. In fact, we have

γn
bn+1

bn
detAn =

detA1

bn∏n−1
j=1 detA j

= γn−1

and

γn
an+1bn+bn+1dn

bn
=

detA1(an+1bn+bn+1dn)

bn+1(∏n
j=1detA j)bn

= βn.

Sincebn/bn+1 > 0 for n ∈ N, we see thatbn andbn+1 have the same sign. Hence, if
assumptions (1.4) and (1.5) holds, thenβnγn > 0 for n sufficiently large. Since

γ2
n

βnβn+1
=

bnbn+2detAn+1

(an+1bn+bn+1dn)(an+2bn+1+bn+2dn+1)
,

Theorem B follows from Theorem A.
By the same manner, from equation (1.8) we obtain

detA1

cn+1∏n
j=1detA j

yn+1+
detA1

cn∏n−1
j=1 detA j

yn−1 =
(ancn+1+cndn+1)detA1

cncn+1∏n
j=1detA j

yn (2.1)

for n∈ N. This difference equation has the same form as equation (1.9). Comparing the
coefficients of both equations, we see that

βn =
(ancn+1+cndn+1)detA1

cncn+1∏n
j=1detA j

and γn =
detA1

cn+1∏n
j=1detA j

.

Sincecn/cn+1 > 0 for n∈ N, we see thatcn andcn+1 have the same sign. Hence, under
the assumptions (1.4) and (1.6), the coefficientsβnγn are positive forn sufficiently large.
Since

γ2
n

βnβn+1
=

cncn+2detAn+1

(ancn+1+cndn+1)(an+1cn+2+cn+1dn+2)
,

Theorem C follows from Theorem A.
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3. Transforming into a difference equation of Riccati type

To prove Theorems 1.1 and 1.2, we should first note that Sturm’s separation theorem
holds for the difference equation

detA1

bn+1∏n
j=1detA j

xn+1+
detA1

bn∏n−1
j=1 detA j

xn−1 =
(an+1bn+bn+1dn)detA1

bnbn+1∏n
j=1detA j

xn (3.1)

and equation (2.1), provided thatbn/bn+1 > 0, cn/cn+1 > 0 and detAn > 0 for n suffi-
ciently large. About the proof of Sturm’s separation theorem concerning linear difference
equations, see [5, pp. 321–322] for example. From Sturm’s separation theorem it follows
that if equation (3.1) (or (2.1)) has one non-trivial solution that is nonoscillatory, then all
its non-trivial solutions are nonoscillatory.

Suppose that system (1.1) has a non-trivial solution{xn} which is nonoscillatory with
respect to the first component. Note that the first component{xn} is a nonoscillatory
solution of (3.1). We can find anm∈ N such thatxn > 0 for n≥ m. Recall that

qn =
bnbn+2detAn+1

(an+1bn+bn+1dn)(an+2bn+1+bn+2dn+1)
.

Define

zn =
(an+2bn+1+bn+2dn+1)xn+1

bn+2detAn+1xn

for n≥ m. Then it follows from (1.4) and (1.5) thatqn > 0 for n sufficiently large. Since
bn/bn+1 > 0 for n sufficiently large, we see thatzn > 0. The sequence{zn} satisfies the
first-order non-linear difference equation

qnzn+
1

zn−1
= 1, n= m+1,m+2, . . . . (3.2)

Equation (3.2) is often called a difference equation ofRiccati type. From Riccati trans-
formation we see that a nonoscillatory solution{xn} of (3.1) corresponds to a positive
solution{zn} of (3.2) and the converse is also true. Hence, Sturm’s separation theorem
guarantees that all non-trivial solutions of (3.1) are nonoscillatory if and only if there ex-
ists an integerℓ≥ m such that equation (3.2) has a solution{zn} satisfyingzn > 0 for all
n ≥ ℓ. We therefore have only to find a positive solution of (3.2) to prove that all non-
trivial solutions of (1.1) are nonoscillatory with respect to the first component; namely,
Theorem 1.1.

To prove Theorem 1.2, we can use the same procedure as that of the above-mentioned.
Suppose that system (1.1) has a non-trivial solution{xn} of (1.1) which is nonoscillatory
with respect to the second component. Then there exists anm∈ N such thatyn > 0 for
n≥ m. Hence, we can define

wn =
(an+1cn+2+cn+1dn+2)yn+1

cn+2detAn+1yn
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for n ≥ m. It is easy to check that the sequence{wn} satisfies the Riccati difference
equation

rnwn+
1

wn−1
= 1, n= m+1,m+2, . . . , (3.3)

where

rn =
cncn+2detAn+1

(ancn+1+cndn+1)(an+1cn+2+cn+1dn+2)
.

Hence, by virtue of Sturm’s separation theorem, we need only to find a positive solution
of (3.3) to prove Theorem 1.2.

Since the proof of Theorem 1.2 is essentially the same as that of Theorem 1.1, we
prove only Theorem 1.1

Proof of Theorem 1.1. From condition (1.11) we see that there exists aK ∈ N such that

pi+1 ≤
1

q2N(k−1)+2i

(
1− p∗i q2N(k−1)+2i−1

)
(3.4)

for i = 1,2, . . . ,N andk ≥ K. We choose a solution{zn} of (3.2) satisfyingz2N(K−1) ≥
p1 > 1. By (1.10) and (3.2), we have

z2N(K−1)+1 =
1

q2N(K−1)+1

(
1− 1

z2N(K−1)

)

≥ 1
q2N(K−1)+1

(
1− 1

p1

)
=

1
p∗1q2N(K−1)+1

> 0.

Hence, by (3.4) withi = 1 andk= K, we obtain

z2N(K−1)+2 =
1

q2N(K−1)+2

(
1− 1

z2N(K−1)+1

)
≥ 1

q2N(K−1)+2

(
1− p∗1q2N(K−1)+1

)
≥ p2 > 1.

Similarly, if z2N(K−1)+2i−2 ≥ pi (i = 2,3, . . . ,N), then

z2N(K−1)+2i−1 =
1

q2N(K−1)+2i−1

(
1− 1

z2N(K−1)+2i−2

)

≥ 1
q2N(K−1)+2i−1

(
1− 1

pi

)
=

1
p∗i q2N(K−1)+2i−1

> 0,

z2N(K−1)+2i =
1

q2N(K−1)+2i

(
1− 1

z2N(K−1)+2i−1

)
≥ 1

q2N(K−1)+2i

(
1− p∗i q2N(K−1)+2i−1

)
≥ pi+1 > 1.
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By mathematical induction, we conclude that

zn ≥


1

p∗i qn
if n= 2N(K−1)+2i −1

pi+1 if n= 2N(K−1)+2i

for i = 1,2, . . . ,N. In particular(i = N), we get

z2NK−1 ≥
1

p∗Nq2NK−1
> 0 and z2NK ≥ pN+1 = p1 > 1.

Using (3.4) withk= K+1 and repeating the same procedure, we have

z2NK+1 =
1

q2NK+1

(
1− 1

z2NK

)
≥ 1

q2NK+1

(
1− 1

p1

)
=

1
p∗1q2NK+1

> 0,

z2NK+2 =
1

q2NK+2

(
1− 1

z2NK+1

)
≥ 1

q2NK+2
(1− p∗1q2NK+1)≥ p2 > 1

and

z2NK+2i−1 =
1

q2NK+2i−1

(
1− 1

z2NK+2i−2

)
≥ 1

q2NK+2i−1

(
1− 1

pi

)
=

1
p∗i q2NK+2i−1

> 0,

z2NK+2i =
1

q2NK+2i

(
1− 1

z2NK+2i−1

)
≥ 1

q2NK+2i
(1− p∗1q2NK+2i−1)≥ pi+1 > 1

for i = 1,2, . . . ,N. To sum up, we obtain

zn ≥


1

p∗i qn
if n= 2NK+2i−1

pi+1 if n= 2NK+2i.

Similarly, the following relation holds:

zn ≥


1

p∗i qn
if n= 2N(k−1)+2i −1

pi+1 if n= 2N(k−1)+2i

for i = 1,2, . . . ,N andk≥ K. Hence, the sequence{zn} is a positive solution of (3.2). We
therefore conclude that all non-trivial solutions of (1.1) are nonoscillatory with respect to
the first component. This completes the proof. 2

In Theorems 1.1 and 1.2, we have focused on a weighted sum of each odd-numbered
term and the next term of the sequences{qn} and{rn}, respectively. As can be seen
from the proof of Theorem 1.1, we can exchange condition (1.11) (resp., (1.12)) with a
condition about a weighted sum of each even-numbered term and the next term of the
sequence{qn}

(
resp.,{rn}

)
as follows.
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Theorem 3.1. Assume(1.4)and (1.5). Suppose that bn/bn+1 > 0 for n sufficiently large,
and

p∗i q2N(k−1)+2i + pi+1q2N(k−1)+2i+1 ≤ 1 (3.5)

for i = 1,2, . . . ,N and k sufficiently large. Then all non-trivial solutions of(1.1) are
nonoscillatory with respect to the first component.

Theorem 3.2. Assume(1.4)and (1.6). Suppose that cn/cn+1 > 0 for n sufficiently large,
and

p∗i r2N(k−1)+2i + pi+1r2N(k−1)+2i+1 ≤ 1

for i = 1,2, . . . ,N and k sufficiently large. Then all non-trivial solutions of(1.1) are
nonoscillatory with respect to the second component.

4. Periodic linear systems

To illustrate our results stated in Section 1, we give some examples in this section.

Example 4.1. Consider system (1.1) with

A1 =

(
2 1√
6/4

√
6/6

)
, A2 =

( √
6/6 1

−
√

3/3 2
√

2

)
,

A3 =

(
2
√

2 1
−8

√
2/7 −3/7

)
, A4 =

(
1 1
16 23

)
,

andAn+4 = An for n∈N. Then all non-trivial solutions are nonoscillatory with respect to
the first component.

In this example, it is clear that

detA1 =

√
6

12
, detA2 =

√
3, detA3 =

2
7

√
2, detA4 = 7,

and detA(n+4) = detAn for n∈N. Hence, assumption (1.4) is satisfied. It is obvious that
assumption (1.5) is also satisfied, becausean, bn anddn are positive numbers. In addition,
we have

qn =
bnbn+2detAn+1

(an+1bn+bn+1dn)(an+2bn+1+bn+2dn+1)
=


0.375 if n= 4k−3

0.125 if n= 4k−2

0.49 if n= 4k−1

0.01 if n= 4k

with k∈ N. Hence,

q4k−3+q4k−2 = 0.5
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and

q4k−1+q4k = 0.5.

This means that condition (1.11) holds forN = 2, i = 1,2 andp1 = p2 = 2. Thus, by
Theorem 1.1, all non-trivial solutions of (1.1) are nonoscillatory with respect to the first
component.

Theorem B is not available for Example 4.1 becauseq4k−3 > 1/4 andq4k−1 > 1/4 for
k∈ N.
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Figure 1: This line graph displays the motion of a solution{xn} of (1.1). The initial condition of the solution
is x0 =

t(1,1).

Figure 1 shows that system (1.1) has a solution which is nonoscillatory with respect to
the first component. The first componentxn is monotone increasing and tends to∞ asn→
∞. Recall that if there is a non-trivial solution which is nonoscillatory with respect to the
first component, then all non-trivial solutions are nonoscillatory with respect to the first
component. However, this solution is oscillatory with respect to the second component.
Hence, by Sturm’s separation theorem, all non-trivial solutions of (1.1) are oscillatory
with respect to the second component.

The next example provides system (1.1) whose all non-trivial solutions are nonoscil-
latory with respect to both components.

Example 4.2. Consider system (1.1) with

A1 =

(
5/14 1
1/2 21

)
, A2 =

(
4 1√

6/12
√

6/24

)
,

A3 =

(
7
√

6/24 1√
3/6 2

√
2

)
, A4 =

(
2
√

2 1√
2/7 3/14

)
,

andAn+4 = An for n∈ N. Then all non-trivial solutions are nonoscillatory.
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Since

detA1 = 7, detA2 =

√
6

12
, detA3 =

√
3, detA4 =

2
7

√
2,

and detA(n+4) = detAn for n∈N, assumption (1.4) is satisfied. It is clear that assumption
(1.5) is also satisfied. We can easily check that

qn =
bnbn+2detAn+1

(an+1bn+bn+1dn)(an+2bn+1+bn+2dn+1)
=


0.01 if n= 4k−3

0.375 if n= 4k−2

0.125 if n= 4k−1

0.49 if n= 4k

with k∈ N. Hence, condition (3.5) holds forN = 2, i = 1,2 andp1 = p2 = 2. In fact,

q4k−2+q4k−1 = 0.5

and

q4k+q4k+1 = 0.5.

Thus, by Theorem 3.1, all non-trivial solutions of (1.1) are nonoscillatory with respect to
the first component.

It is obvious that assumption (1.6) is also satisfied, becausean, cn anddn are positive
numbers. It is also easy to check that

rn =
cncn+2detAn+1

(ancn+1+cndn+1)(an+1cn+2+cn+1dn+2)
=


0.137· · · if n= 4k−3

0.200· · · if n= 4k−2

0.040· · · if n= 4k−1

0.411· · · if n= 4k

with k∈ N. Hence, condition (1.12) holds forN = 2, i = 1,2 andp1 = p2 = 2. In fact,

r4k−3+ r4k−2 = 0.337· · ·< 0.5

and

r4k−1+ r4k = 0.452· · ·< 0.5.

Thus, by Theorem 1.2, all non-trivial solutions of (1.1) are nonoscillatory with respect to
the second component.

However, sinceq4k−2 > 1/4, q4k > 1/4 andr4k > 1/4 for k ∈ N, Theorems B and C
are not applicable for Example 4.2.

From Figure 2 we see that there is a non-trivial solution of (1.1) which is nonoscil-
latory with respect to the first and second components. Both componentsxn andyn are
monotone increasing and tend to∞ asn→ ∞. Sturm’s separation theorem guarantees that
all non-trivial solutions of (1.1) are nonoscillatory.

In Examples 4.1 and 4.2, system (1.1) was periodic one with period 4. We next give a
periodic linear difference system with larger size period.

12
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Figure 2: This line graph displays the motion of a solution{xn} of (1.1). The initial condition of the solution
is x0 =

t(1,1).

Example 4.3. Consider system (1.1) with

A1 =

(
6 1
1 1

)
, A2 =

(
9 1
0 9

)
, A3 =

(
1 1
0 1

)
, A4 =

(
9 1
−4 9

)
,

A5 =

(
1 1

5/9 5

)
, A6 =

(
5 1
1 1

)
, A7 =

(
9 1
−1 7

)
, A8 =

(
3 1
2 4

)
,

andAn+8 = An for n∈N. Then all non-trivial solutions are nonoscillatory with respect to
the first component.

Since

detA1 = 5, detA2 = 81, detA3 = 1, detA4 = 85,

detA5 = 40/9, detA6 = 4, detA7 = 64, detA8 = 10,

and detAn+8 = detAn for n∈ N, assumptions (1.4) is satisfied. It is clear that assumption
(1.5) is also satisfied. We can check that

qn =
bnbn+2detAn+1

(an+1bn+bn+1dn)(an+2bn+1+bn+2dn+1)
=



0.81 if n= 8k−7

0.01 if n= 8k−6

0.85 if n= 8k−5

0.04̇ if n= 8k−4

0.04 if n= 8k−3

0.64 if n= 8k−2

0.10 if n= 8k−1

0.05 if n= 8k
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with k ∈ N. Hence, condition (3.5) holds forN = 4, i = 1,2,3,4 and p1 = p2 = 10,
p3 = p4 = 5/4. In fact, sincep∗1 = p∗2 = 10/9 andp∗3 = p∗4 = 5, we see that

p∗1q8k−7+ p2q8k−6 = 1,

p∗2q8k−5+ p3q8k−4 = 1,

p∗3q8k−3+ p4q8k−2 = 1,

p∗4q8k−1+ p1q8k = 1.

Thus, by Theorem 3.1, all non-trivial solutions of (1.1) are nonoscillatory with respect to
the first component.
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Figure 3: This line graph displays the motion of a solution{xn} of (1.1). The initial condition of the solution
is x0 =

t(1,1).

As drawn in Figure 3, there is a non-trivial solution of (1.1) which is nonoscillatory
with respect to the first component. Hence, from Sturm’s separation theorem it turns that
all non-trivial solutions of (1.1) are nonoscillatory with respect to the first component.

We mentioned the periodic system so that it might be easy to carry out a simulation
in this section. Finally, the reader should note that our results can be applied even to
non-periodic linear difference systems.

Acknowledgements

This research was supported in part by Grant-in-Aid for Scientific Research (C),
No. 25400165 and No. 17K05327 from the Japan Society for the Promotion of Science.

The author thanks anonymous reviewers who read the manuscript carefully and gave
valuable comments.

References

[1] R.P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Appli-
cations, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics, 228,
Marcel Dekker, New York, 2000.

14
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