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Abstract

This paper deals with nonoscillation problem about the non-autonomous linear difference
system
Xn:Aan—la n:1727"'7

whereA, is a 2x 2 variable matrix that is nonsingular fare N. In the special case that

A is a constant matrix, it is well-known that all non-trivial solutions are nonoscillatory

if and only if all eigenvalues oA are positive real numbers; namely, Alet O, trA > 0

and def\/(trA)? < 1/4. The well-known result can be said to be an analogy of ordinary
differential equations. The results obtained in this paper extend this analogy result. In
other words, this paper clarifies the distinction between difference equations and ordinary
differential equations. Our results are explained with some specific examples. In addition,
figures are attached to facilitate understanding of those examples.
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1. Introduction

We consider the second-order linear time-variant system

Xn = AnXn_1, n=12,..., (1.2)

[ *n _[an by
X“_<yn> and A”_(cn dn)

in which the components, andy,, and the coefficienta,, b,, ¢, andd, are real numbers.
Itis always assumed that the mat#xis nonsingular fon € N. Needless to say, equation
(1.1) has the trivial solutiofix, }; that is,(Xn, yn) = (0, 0) for n € N. A non-trivial solution
{xn} of (1.1) is said to bescillatory with respect to the firgtesp.,secondl componentf,

where
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for everyn € N there exists am > n such thakmXmy1 < 0 (resp. ymym+1 < 0). Otherwise,

it is said to benonoscillatory with respect to the firédr second componentHence, if a
non-trivial solution{xn} of (1.1) is nonoscillatory with respect to the first (resp., second)
component, then there exists ane N such thatx, > 0 forn> mor x, <0 forn>m
(resp..yn > 0 forn>mory, < 0 forn> m). Itis clear that if{x,} is a solution of (1.1),
then{—x,} is also a solution of (1.1). Hence, we can assume without loss of generality
that a non-trivial solution{x,} of (1.1) which is nonoscillatory with respect to the first
(resp., second) component satisfy tkafresp. yn) is positive for all largen. A non-trivial
solution{xp} of (1.1) is said to b@onoscillatoryif it is nonoscillatory with respect to the
first and second components.

The purpose of this paper is to give sufficient conditions for all non-trivial solutions
of (1.1) to be nonoscillatory with respect to the first (or second) component. Of course,
the coefficients of the matri&, determine whether or not all non-trivial solutions of (1.1)
are nonoscillatory with respect to the first component.

In the special case that
_A_(a'Db

wherea, b, c andd are real constants, system (1.1) is equivalent to the second-order
autonomous linear equations

Xnt1+ (detd)xp_1 = (trA) Xy (1.2)

and
Yn+1+ (d€A)Yn-_1 = (trA)yn (1.3)

for n € N. Itis clear that if deA < 0, then the characteristic equation
A% (rA)A +detd =0

has two real roots of opposite signs: < 0 < A>. Hence, two sequencégd['} and{AJ'}

are an oscillatory solution and a nonoscillatory solution of (1.2) (or (1.3)), in other words,
oscillatory solutions and nonoscillatory solutions coexist in equation (1.2) (or (1.3)) in the
meaning of the definition described above. Kt 0 < detA, then all non-trivial solutions

of (1.2) (or (1.3)) are oscillatory. If dat> 0 and tA > 0, then all non-trivial solutions of
(1.2) (or (1.3)) are nonoscillatory if and only if det (trA)?/4. Thus, under the above-
mentioned definitions about oscillation and nonoscillation, Sturm’s separation theorem
holds when det > 0, but it fails to hold when dét< 0.

Remark 1.1. Equations (1.2) and (1.3) are contained in the self-adjoint second-order dif-
ference equation

A(%Aanl) —|— ann — 0

with e, # 0. Note that, is not necessarily of one sign (for example, see [2]). The follow-
ing definitions different from the above are often made for oscillation and nonoscillation
(refer to [4, 6, 16, 17]). An intervalm,m+ 1] is said to contain generalized zerof a
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solution{xn} if Xm # 0 andenxmXm+1 < 0. A non-trivial solution is calledscillatoryif it

has infinitely many generalized zeros. In the opposite case, a non-trivial solution is called
nonoscillatory It is known that the so-called Reid roundabout theorem, Sturm’s compar-
ison theorem, and Sturm’s separation theorem hold under the definition focused on the
sign ofenxnxn 1. Hence, all non-trivial solutions are either oscillatory or nonoscillatory.
However, these pieces of information are different topics from this paper and will not be
used hereatfter.

Let us get back to the subject. If there exists a subsequmgesuch thato, = O,
then it follows from system (1.1) that, = an Xn—1. Hence, it is clear that if, <0,
thenx,, 1 andx,, do not have the same signs. This meansadhétas to be positive for all
sufficiently largen € N in order for all non-trivial solutions of (1.1) to be nonoscillatory
with respect to the first component. In other words, when discussing whether all non-
trivial solutions of (1.1) are nonoscillatory with respect to the first component or not, it
is important to analyze the asymptotic behavior of solutions wies not zero. Since
nonoscillation for the second component is also the same situation as that for the first
component, we assume thatandc, are not zero for all sufficiently large € N in this
paper.

From consideration about the case tAgtis a 2x 2 constant matrix, to achieve our
purpose, it is natural to assume that

detA, >0, (1.4)
any10n +bny1dn >0, (1.5)
bn
and
anCn+1:‘ CnOnt1 <0 (1.6)
n

for all sufficiently largen € N. We can rewrite system (1.1) as

b bn + bn1d
bn bn
and Lo
C C C
n n

for all sufficiently largen € N.
Hooker et al. [10, 11, 14] have considered the second-order linear difference equation

YaXnt1+ Y- 1%n-1 = BnXn, n=12..., (1.9)

and presented some conditions which guarantee that all non-trivial solutions of (1.9) are
nonoscillatory (they also gave sufficient conditions for all non-trivial solutions of (1.9) to
be oscillatory). Their typical and fundamental result on nonoscillation is as follows (see
also the books [1, Chap. 6], [5, Chap. 7], [12, Chap. 6]).
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Theorem A. If Bayn > 0and 2/ (BnBni1) < 1/4 for all sufficiently large re N, then all
non-trivial solutions of1.9) are nonoscillatory

The constant 24 often appears as a critical value that divides oscillation and nonoscil-
lation of solutions of second-order linear differential equations (for example, see [9, 13,
15, 19]). This critical value is called asscillation constantWe can also find researches
on the oscillation constant of second-order difference equations in [3, 7, 8, 18] and the
references cited therein. In that sense, it is not too much to say that Theorem A is an
analogy of results of ordinary differential equations.

Using Theorem A, we obtain the following results (see Section 2 for the proof).

Theorem B. Assuméd1.4)and(1.5).If by/by1 > 0and

bnbni2 detAn; 1
(@nt1bn +bny10n) (@n2bn1 +bny2dni1)

1
< Z
— 4

for n sufficiently largethen all non-trivial solutions of1.1) are nonoscillatory with re-
spect to the first component

Theorem C. Assumégl.4)and(1.6).If cy/chr1 > 0and

CnCni2de?n 1
(8nCn+1+ CnOnt1)(8nr1Cnt2 + Cny10n42)

1
< =
— 4

for n sufficiently largethen all non-trivial solutions of1.1) are nonoscillatory with re-
spect to the second component.

If Ah=A, then
bnbn2detin, 1
(@n+1bn + bny10n) (8n4-20n+1 + bny20ny1)
detA CnCni2detAn 1

~ (trA)?2 " (anCnt1+Cnbny1)(8nt1Cni2 + Cnialng2)
Hence, all non-trivial solutions of (1.1) are nonoscillatory with respect to the first compo-
nent if and only if those are nonoscillatory with respect to the second component.
In this paper, we would like to clarify a distinction between difference equations and
ordinary differential equations. For simplicity, let

bnbn 2 detAn 1
an11bn 4 bny10n) (@ng 20011 +bny20ny1)

Qn:(

and
CnCni2defAn 1

(@nCn+1+ CnOns1) (@ns1Cne2 + Cnr10ng2)

rn:



We can notice that two positive sequen¢gs} and{r,} play important roles in Theorems
B and C, respectively. Theorems B and C demand that each term of the sequences is less
than or equal to 1/4. However, it is thought that this demand is very strong. To weaken
the condition that the sequences should satisfy, we pay our attention to a weighted sum of
two adjacent terms of the sequences.

We choose ail € N arbitrarily. Letp; (1 <i < N) be any real number that is larger
than 1 and lep; be the conjugate number pf, namely,

1 1

—+—=1 1.10
i P (1.10)

Thenp; is also greater than 1. We reggyd;.1 asp;. Then we have the following results.

Theorem 1.1. Assumdl1.4)and(1.5). Suppose thatyb,1 > 0 for n sufficiently large
and

P OoN(k—1)+2i—1 + Pi10onk-1)+2i < 1 (1.11)

fori=1,2,...,N and k sufficiently large Then all non-trivial solutions of(1.1) are
nonoscillatory with respect to the first component

Theorem 1.2. Assumd1.4)and (1.6). Suppose thatgc,1 > O for n sufficiently large
and

P ToN(k-1)+2i—1 F Pisalonk-1)42i < 1 (1.12)

fori =1,2,...,N and k sufficiently large Then all non-trivial solutions of(1.1) are
nonoscillatory with respect to the second component

To compare Theorems 1.1 and 1.2 with Theorems B and C, respectively, we choose 1
asN € N. Let p; = p; = 2. Then the following corollaries hold.

Corollary 1.3. Assumél.4)and(1.5). Suppose thatf/b, 1 > 0for n sufficiently large
and

200k—1+20x <1

for k sufficiently large Then all non-trivial solutions of1.1) are nonoscillatory with
respect to the first component

Corollary 1.4. Assumé1l.4)and(1.6). Suppose thatgc,;1 > 0 for n sufficiently large
and
2k 1+2rx<1

for k sufficiently large Then all non-trivial solutions of1.1) are nonoscillatory with
respect to the second component

Although Corollary 1.3 (or Corollary 1.4) has a pretty simple form, it contains Theo-
rem B (or Theorem C) completely.



2. Transforming from system(1.1)to equation (1.9)

As was mentioned in Section 1, system (1.1) is equivalent to equation (1.7). Moreover,
equation (1.7) is transformed into equation (1.9) with

o detAl
bn+]_ |_| T:]_ detAJ '

(8n+1bn+ bny1dn)detdy
bnbn+]_ I_IT:]_ detAJ

Bn = and

Here, we regarc|1'|]°:1 detAj as 1. In fact, we have

de1A1 o
bn [1}-1 detj

n by -1

and

y ani1bn+bni1dn  detdq(an;1bn +bny1dn)
n

b Deaal[]dey)b,

Sinceby /b1 > 0 for n € N, we see thab, and b, 1 have the same sign. Hence, if
assumptions (1.4) and (1.5) holds, theyy, > O for n sufficiently large. Since

Vr% _ Pnbni2 detAn; 1
BaBni1  (ant1bn+bni1dn)(@nsi2bnet +bni2dni)’

Theorem B follows from Theorem A.
By the same manner, from equation (1.8) we obtain

detp; detp; (8nCn+1+ Cndny1)detdg

TR e q = 2.1
Cn+1|'|?:1de‘Ajy CnI'IT;%deryn YT Gt 1], de oo @D

for n € N. This difference equation has the same form as equation (1.9). Comparing the
coefficients of both equations, we see that

de1A1
Cni1l |‘|'J-1:1de1Aj ’

(@nCny1+ Cndny1)detdy
CnCny1 |‘|?:1de1Aj

Bn= and y,=

Sincec,/ch11 > 0 for n € N, we see that, andc,1 have the same sign. Hence, under
the assumptions (1.4) and (1.6), the coefficighg are positive fom sufficiently large.

Since
Vr% _ CnCni2detAn 1
BaBni1  (8nCny1+CnOni1)(@nt1Cni2+Cnyathi2)’
Theorem C follows from Theorem A.




3. Transforming into a difference equation of Riccati type

To prove Theorems 1.1 and 1.2, we should first note that Sturm’s separation theorem
holds for the difference equation

detp; detp; (an+1bn —+ bn+1dn)de1A1
X + — X1 = X 3.1
Bni1 |_|T:1 detA; n bn HT;% deth; -1 Bnbnt1 ﬂ?:l detA; " 1)

and equation (2.1), provided thb§/b,.1 > 0, ¢y/chr1 > 0 and ded, > 0 for n suffi-
ciently large. About the proof of Sturm’s separation theorem concerning linear difference
equations, see [5, pp. 321-322] for example. From Sturm’s separation theorem it follows
that if equation (3.1) (or (2.1)) has one non-trivial solution that is nonoscillatory, then all
its non-trivial solutions are nonoscillatory.

Suppose that system (1.1) has a non-trivial solufiai} which is nonoscillatory with
respect to the first component. Note that the first compofgiit is a nonoscillatory
solution of (3.1). We can find am € N such that, > 0 for n > m. Recall that

bnbni2detAn; 1
an+1bn+ bny10n) (@n4-2bn11 + bnp2Onyg)

Qn:(

Define
(8n+2bn+1+ bny2dng1)Xnt1

bni2detAn 1 Xn
for n>m. Then it follows from (1.4) and (1.5) tha, > O for n sufficiently large. Since
bn/bny1 > O for n sufficiently large, we see thag > 0. The sequencéz,} satisfies the
first-order non-linear difference equation

ann—f—i:l, n=m+1m+2.... (3.2)
Zn-1
Equation (3.2) is often called a difference equatiorRafcatitype. From Riccati trans-
formation we see that a nonoscillatory solutim,} of (3.1) corresponds to a positive
solution{z,} of (3.2) and the converse is also true. Hence, Sturm’s separation theorem
guarantees that all non-trivial solutions of (3.1) are nonoscillatory if and only if there ex-
ists an integef > msuch that equation (3.2) has a solutign} satisfyingz, > 0 for all
n > ¢. We therefore have only to find a positive solution of (3.2) to prove that all non-
trivial solutions of (1.1) are nonoscillatory with respect to the first component; namely,
Theorem 1.1.
To prove Theorem 1.2, we can use the same procedure as that of the above-mentioned.

Suppose that system (1.1) has a non-trivial solufixi} of (1.1) which is nonoscillatory
with respect to the second component. Then there exists @iN such thaty, > 0 for
n> m. Hence, we can define

(8n+1Cn+2+ Cnt10n42)Ynt1
Cni20d€fni1Yn

Wn:



for n>m. It is easy to check that the sequenia®,} satisfies the Riccati difference
equation

1
rnWn + =1, n=m+1m+2,..., (3.3)
Wh-1

where
CnCni2detn 1

(@nCn+1+CnOny1)(@ns1Cns2 +Cnr10ni2)
Hence, by virtue of Sturm’s separation theorem, we need only to find a positive solution
of (3.3) to prove Theorem 1.2.
Since the proof of Theorem 1.2 is essentially the same as that of Theorem 1.1, we
prove only Theorem 1.1

Proof of Theorem 1.1. From condition (1.11) we see that there exisks @ N such that
1 +
Pi+1 < -(1- P dank-1)42i-1) (3.4)
O2N(k—1)+2i

fori=1,2,...,N andk > K. We choose a solutiofiz,} of (3.2) satisfyingznk-_1) >
p1 > 1. By (1.10) and (3.2), we have

; (-1
ANK-D+1 OoN(K—1)+1 DHN(K-1)

1 1 1
UoN(K-1)+1 P1 P1doN(K—1)+1
Hence, by (3.4) with = 1 andk = K, we obtain

Z = 1 1- 1
NK-1)+2 OoN(K—1)+2 HN(K—1)+1

>  (1—p; _ > P> 1
q2N(K—1)+2( P12n(k 1)+1) P2

Similarly, if Znk_1)+21—2 > pi (i=2,3,...,N), then

1 1_ 1
UoN(K—1)+2i-1 ON(K-1)+2i—2

ON(K-1)+2i-1=

1 1 1
)t
UoN(K—1)+2i—-1 Pi By OoN(k—1)+2i-1

1 1
NK g = ——— [l ——
NK-D+2 Q2N(K—1)+2i ( ZZN(K—l)—i—Zi—l)

= —_(1— pi*qZN(Kfl)JrZifl) > pit1>1
U2N(K—1)+2i



By mathematical induction, we conclude that

. if n=2N(K-1)+2i—1
Zy > { PBihn

pir1  if n=2N(K—-1)+2i

fori=1,2,...,N. In particular(i = N), we get
1
NK-12> ———>0 and znk > pnir=p1> 1
PnO2NK -1

Using (3.4) withk = K + 1 and repeating the same procedure, we have

1 1 1 1 1
ZONK+1 = 1- > 1-— ) =———>0,
O2NK-+1 IONK O2NK+1 P1 P102NK+1

1 1 1 .
ZONK+2 = 1- > (1—pioonk+1) > p2>1
OoNK+2 ZONK+1 OoNK+2
and
1 1 1 1 1
ZZNK+2i1:—(1— ) > (1__> =———— >0,
OoNK+2i—1 ZONK+2i—2 OoNK+2i—1 Pi Pi donK+-2i—1
1 1 1 .
ZONK+2i = (1— > > (1— piO2NK+2i-1) > Pit1>1
O2NK-+-2i ZONK+2i—1 UoNK+-2i

fori=1,2,...,N. To sum up, we obtain

if N=2NK+2i—1

i On

Z, >
pi+1 If n=2NK+2i.

Similarly, the following relation holds:

. if n=2N(k—1)+2i—1
Zy,> < Pitn

pir1  if n=2N(k—1)+2i

fori=1,2,...,Nandk > K. Hence, the sequenge,} is a positive solution of (3.2). We
therefore conclude that all non-trivial solutions of (1.1) are nonoscillatory with respect to
the first component. This completes the proof. O

In Theorems 1.1 and 1.2, we have focused on a weighted sum of each odd-numbered
term and the next term of the sequendes} and {r,}, respectively. As can be seen
from the proof of Theorem 1.1, we can exchange condition (1.11) (resp., (1.12)) with a
condition about a weighted sum of each even-numbered term and the next term of the
sequencgqn} (resp.{rn}) as follows.



Theorem 3.1. Assumdl1.4)and(1.5). Suppose thatyb,1 > 0 for n sufficiently large
and

P OoN(k—1)+2i T Pi+10oN(k-1)+2i+1 < 1 (3.5)

fori=1,2,...,N and k sufficiently large Then all non-trivial solutions of(1.1) are
nonoscillatory with respect to the first component

Theorem 3.2. Assumd1.4)and (1.6). Suppose thatgc,1 > O for n sufficiently large
and

PiToN(k—1)+2i + Pitalonk-1)42i41 < 1

fori=1,2,...,N and k sufficiently large Then all non-trivial solutions of(1.1) are
nonoscillatory with respect to the second component

4. Periodic linear systems

To illustrate our results stated in Section 1, we give some examples in this section.

Example 4.1. Consider system (1.1) with

m= (Ve vere) o= (a0 202
A3:<—§\\/f2§/7 —31/7)’ A4:(116 213>

andA, 4 = A, for n € N. Then all non-trivial solutions are nonoscillatory with respect to
the first component.

In this example, it is clear that

6 2
detd; — 1—f2 detho =3, detbg=2v2, dethy=7,
and defA(n+4) = detA, for n € N. Hence, assumption (1.4) is satisfied. It is obvious that
assumption (1.5) is also satisfied, becaasé, andd, are positive numbers. In addition,

we have

0375 ifn=4k-3

e bnbn2detn 1 ~)0125 ifn=4k-2
" (8n11bn+bny10n) (@ns 20011 +bny20n 1) 049 ifn=4k-1
0.01 if n=4k

with k € N. Hence,
Oak—3+Oak—2=0.5
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and

Oak—1+ Qak = 0.5.
This means that condition (1.11) holds fdr= 2,1 = 1,2 andp; = p2 = 2. Thus, by
Theorem 1.1, all non-trivial solutions of (1.1) are nonoscillatory with respect to the first
component.

Theorem B is not available for Example 4.1 becagges > 1/4 andqg_1 > 1/4 for
ke N.

Yn

5.0x10° |

IIL

N 50x10°  1.0x10° ox10°  2.0x100  2.5x10°

-5.0x10° |

-1.0x108 |

-1.5%x106 F

Figure 1: This line graph displays the motion of a soluff@p} of (1.1). The initial condition of the solution
isxo="(1,1).

Figure 1 shows that system (1.1) has a solution which is nonoscillatory with respect to
the first component. The first componepis monotone increasing and tendsd@asn —
o, Recall that if there is a non-trivial solution which is nonoscillatory with respect to the
first component, then all non-trivial solutions are nonoscillatory with respect to the first
component. However, this solution is oscillatory with respect to the second component.
Hence, by Sturm’s separation theorem, all non-trivial solutions of (1.1) are oscillatory
with respect to the second component.

The next example provides system (1.1) whose all non-trivial solutions are nonoscil-
latory with respect to both components.

Example 4.2. Consider system (1.1) with

& <51//124 211)’ fe™ (\/g}lz %1/24)’
w=("gle 2) n= (7 9se)

andAn.4 = A, for n € N. Then all non-trivial solutions are nonoscillatory.
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Since

detd; =7, detd, = g, detds = V3, detdy = é\fz,

and deA(n+4) = detA, for n € N, assumption (1.4) is satisfied. Itis clear that assumption
(1.5) is also satisfied. We can easily check that

001 ifn=4k-3

o — bnbn2detn 1 _)0375 ifn=4k-2
" (@n+1bn + bt 10n) (8nt-2bn+1 + bBnr2dni1) 0.125 ifn=4k-1
0.49 if n=4k

with k € N. Hence, condition (3.5) holds f&f = 2,i = 1,2 andp; = p2 = 2. In fact,

Oak—2+ Oak—1=0.5
and
Oak + Qak+1 = 0.5.

Thus, by Theorem 3.1, all non-trivial solutions of (1.1) are nonoscillatory with respect to
the first component.

It is obvious that assumption (1.6) is also satisfied, becagis® andd, are positive
numbers. It is also easy to check that

0.137--- if n=4k-3
CnCn2detdn 1 0.200--- if n=4k-2

rn: =

(@nCn+1+ Cndni1)(@nt1Cni2+Cnr10ni2) 0.040--- if n=4k—1
0.411.-- if n=4k

with k € N. Hence, condition (1.12) holds fof = 2,i = 1,2 andp; = p2 = 2. In fact,

lak—3+ a2 =0.337--- <05
and
Fa_1+ra =0.452--- < 0.5.

Thus, by Theorem 1.2, all non-trivial solutions of (1.1) are nonoscillatory with respect to
the second component.

However, since@uy_» > 1/4, qu > 1/4 andrg > 1/4 fork € N, Theorems B and C
are not applicable for Example 4.2.

From Figure 2 we see that there is a non-trivial solution of (1.1) which is nonoscil-
latory with respect to the first and second components. Both compoxeatsly, are
monotone increasing and tendebaasn — co. Sturm’s separation theorem guarantees that
all non-trivial solutions of (1.1) are nonoscillatory.

In Examples 4.1 and 4.2, system (1.1) was periodic one with period 4. We next give a
periodic linear difference system with larger size period.
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y??

2.0x10° |

1.5x10°}

1.0x10°}

0.5%x10° |

; — — T,
1.0x10° 2.0x10° 3.0x10°

Figure 2: This line graph displays the motion of a soluff@p} of (1.1). The initial condition of the solution
iISXg = t(l, 1).

Example 4.3. Consider system (1.1) with
6 1 9 1 11 9 1
1 1 51 9 1 31
A5:(5/9 5)’ Aﬁz(l 1)’ A7:(—1 7)’ Ag:(z 4)’

andA, s = A, for n € N. Then all non-trivial solutions are nonoscillatory with respect to
the first component.

Since
detA; =5, detA, =81, detAz =1, detA4 = 85,
detAs = 40/9, detAg = 4, detA; = 64, detAg = 10,

and def,, g = detA, for n € N, assumptions (1.4) is satisfied. It is clear that assumption
(1.5) is also satisfied. We can check that

(081 if n=8k—7
001 ifn=8k—6
0.85 ifn=8k—5

bnbn 2 detin, 1 _Jo04 ifn=8k-4

an+10n+ bnp10n) (ns2bni1+bni20ni1) ) 0.04 if n=8k—3
064 if n=8k—2
010 ifn=8k—1

(0.05 if n=8k

qn:(
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with k € N. Hence, condition (3.5) holds fad = 4,1 =1,2,3,4 and p; = p2 = 10,
p3 = ps = 5/4. In fact, sincep; = p; = 10/9 andp; = p; = 5, we see that

P10sk—7 -+ P20sk—6 = 1,
P50sk—5 -+ P3Csk—4 = 1,
P30sk—3+ Padek—2 = 1,

Padsk—1+ P10sk = 1.

Thus, by Theorem 3.1, all non-trivial solutions of (1.1) are nonoscillatory with respect to
the first component.

Yn

2.0x108 4.0x108

-5.0x107 |

-1.0x10° |

-1.5x10° |

Figure 3: This line graph displays the motion of a solutj@r} of (1.1). The initial condition of the solution
isxo="(1,1).

As drawn in Figure 3, there is a non-trivial solution of (1.1) which is nonoscillatory
with respect to the first component. Hence, from Sturm’s separation theorem it turns that
all non-trivial solutions of (1.1) are nonoscillatory with respect to the first component.

We mentioned the periodic system so that it might be easy to carry out a simulation
in this section. Finally, the reader should note that our results can be applied even to
non-periodic linear difference systems.
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