ファイル情報(添付) | |
タイトル |
Nonoscillation of Mathieu’s equation whose coefficient is a finite Fourier series approximating a square wave
|
著者 | |
収録物名 |
Monatshefte für Mathematik
|
巻 | 186 |
号 | 4 |
開始ページ | 721 |
終了ページ | 743 |
収録物識別子 |
ISSN 0026-9255
EISSN 1436-5081
|
内容記述 |
その他
Parametric nonoscillation region is given for the Mathieu-type differential equation
x′′+(−α+βc(t))x=0, where α and β are real parameters. Oscillation problem about a kind of Meissner’s equation is also discussed. The obtained result is proved by using Sturm’s comparison theorem and phase plane analysis of the second-order differential equation y′′+a(t)y′+b(t)y=0, where a, b:[0,∞)→R are continuous functions. The feature of the result is the ease of chequing whether the obtained condition is satisfied or not. Parametric nonoscilla- tion region about (α,β) and some solution orbits are drawn to help understand the result. |
主題 | |
言語 |
英語
|
資源タイプ | 学術雑誌論文 |
発行日 | 2017-4-11 |
出版タイプ | Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの) |
アクセス権 | オープンアクセス |
関連情報 |
[DOI] 10.1007/s00605-017-1049-7
|