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Nonoscillation of Mathieu’s equation whose cofficient is
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Abstract Parametric nonoscillation region is given for the Mathieu-tygeedéntial
equation

X’ +(—a+pBc(t))x =0,

wherea andg are real parameters. Oscillation problem about a kind of Meissner’s
equation is also discussed. The obtained result is proved by using Sturm’s comparison
theorem and phase plane analysis of the second-orflerafitial equation

y" +a(t)y’ +b(t)y =0,

wherea, b: [0,0) — R are continuous functions. The feature of the result is the ease
of chequing whether the obtained condition is satisfied or not. Parametric nonoscilla-
tion region aboutd,3) and some solution orbits are drawn to help understand the
result.
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1 Introduction

As known well, the function

n/4 if0<t<l,
f(t) =
-n/4 if 1<t<2
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with f(t) = f(t+2) can be expanded to the Fourier series

i sin((2n—1)rt)

o 2n-1
The functionf expresses a square wave with period 2. Sifde a discontinuous
function, theNth partial sum of the Fourier series

Su(t) = Zsm((;: 11)7rt)

converges to the square wave functibfor each fixed but not uniformly int. Also,
the Gibbs phenomenon occurs in the neighbourhood of the points of discontinuities.

Since
SN(t)=7erCOS((21 Drs)ds= = L%ds

it has local extreme values &t k/(2N) with k € Z butk is not a multiple of . The
maximum value oBy is

" sin(2Nr ) 1 (™ 7/(2N) sint

Sn(t/(en) = 5 [T ds= 5 [ TS

Hence, the peak value of the Gibbs phenomenon is

. 1
lim Sn(1/@N) = f SINT 4 = 0.925968526..
—00 0

Since lim_,o+ f(t) = n/4, the overshoot is

0.140570362...

T sint
\___ ST g =

The undershoot is the same (see Figure 1). The Gibbs phenomenon never disappears
even if the numbeN of terms of the finite Fourier seri&, is very large. In an actual
simulation, we cannot make infinite. Hence, the upper and lower bound$Sgfare

not sharp.

The Gibbs phenomenon has been recognised as a kind of noise in the field of
digital signal processing. Hence, this is an undesirable phenomenon. For this reason,
various ideas are carried out to avoid this phenomenon. For example, the Gibbs phe-
nomenon is known to be improved by using a smooth method cilGesimmation
of Fourier series. Define

1 1 o & sin((X-1)rt)
TN(t)=N; n(t)—ﬁéé—%_l :

Then, limy-e Tn(t) = f(t). The Gibbs phenomenon does not happen for thé@es
summationTy. This means that the upper (resp., lower) boun@pbpproaches/4
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Fig. 1 The graph of the finite Fourier seri€g (t) whenN = 10 andN = 20

(resp.,—/4) from above (resp., below) & — oo (see Figure 2). Hence, we see that
for any suficiently smalle > 0, there exists aN € N such that

Tn@)| <m/d+e<1

forteR.
Let p be a periodic function on [00). The functionp is said to be periodic of
mean value zerd pis not identically zero and

i “pt)dt=0,

wherew is the period ofp. Note that any indefinite integral qf is also a periodic
function with the same period as thatf

Fig. 2 The graph of the Céso summatiomy whenN =5 andN = 10

In this paper, we consider the second-ordéiedéential equation
X’ +(—a+pBc(t))x =0, (1.1)

where the prime denoted/dt, the parameters andg are real numbers, and the
functioncis continuous on [0») and periodic of mean value zero. Sins periodic,
it is bounded. Let* be an upper bound ¢d|; that is,

lc(t) <c* for t>0. 1.2)
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t
Sincec is periodic with mean value zero, the integral functi{nc(s)dshas a lower
0

boundC and an upper bound. LetC* = (C-C)/2 and define

C(t) = fo tc(s)d s— %(g +C).

Then, we have
IC(t))<C* fort>0. (1.3)

The trigonometric functions sitt and cost are periodic with period 2. We may
regard 1 and Ar asc* andC, respectively. The finite Fourier seri8g andTy also
satisfy the assumptions ofandC. As was shown above, if= Sy, thenc* = 0.9260
andC* = 0.3927 forN suficiently large; ifc = Ty, thenc* = 0.7854 andC* = 0.3927
for N suficiently large.

Equation (1.1) may be considered as a generalised Mathieu equation. Mathieu’s
equation often describes parametric excitation. Parametric excitation is a famous vi-
bration phenomenon that appears in mechanical engineering, electrical engineering,
acoustical engineering, and so on. This vibration phenomenon is caused by the pe-
riodic change of the parameters which is inherent in the mechanical system. For ex-
ample, the position of a pivot point, the arm length of a pendulum, the inductance of
an electrical circuit, and the tension of a string are cited as those parameters. We can
find various concrete examples of Mathieu’s equation in [2-4, 6, 10, 22, 23, 25, 26].

Let us consider an inverted pendulum whose pivot point vibrates periodically
in the vertical direction. In the case that the motion speed of the pivot point is the
functionC, we can write the motion equation of the inverted pendulum as

X’ + (—a+Bc(t))sinx = 0.

Here, we ignore the friction at the pivot point. Equation (1.1) is the linear approxima-
tion of this motion equation.

The purpose of this paper is to present parametric conditionsygf) (vhich
guarantees that all nontrivial solutions of (1.1) are nonoscillatory (see Section 2 for
the definitions).

Sincec is a periodic function, equation (1.1) belongs to Hill's equation

X’ +g(t)x =0, 1.4)

whereg is a periodic function. About applications of Hill's equation, refer to [13,
21,23]. We can find various results about the oscillation problem of (1.4) in many
literatures (for example, see [7,18-20, 31]). It is well-known thatig periodic of
mean value zero, then all nontrivial solutions of (1.4) are oscillatory (for the proof,
see [7, p.25]). Hence, i& = 0 andg # 0, then all nontrivial solutions of (1.1) are
oscillatory. It follows from Sturm’s comparison theorem that i 0 andg # 0, then

all nontrivial solutions of (1.1) are oscillatory. It is clear that

(a) if @ <0 andB = 0, then all nontrivial solutions of (1.1) are oscillatory;

(b) if @ =0 andB = 0, then all nontrivial solutions of (1.1) are nonoscillatory.
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Thus, a necessary condition for all nontrivial solutions of (1.1) to be nonoscillatoy is
thata > 0. Our result is as follows.

Theorem 1.1 If

2
1 . c*
6\/& if OSQ<(2C*),
1Bl < , (1.5)
L
c* 4(C*)2 —\2C* ’
then all nontrivial solutions of1.1) are nonoscillatory

Theorem 1.1 has a feature that it is very easy to cheque. For a givenavalQe
we can seek a value gfsatisfying condition (1.5) immediately. It is also manageable
to obtain a positive value ef satisfying condition (1.5) for a given valyex= R.

B

Fig. 3 Parametric nonoscillation region about§) given by (1.5) whert* = 0.7854 andC* = 0.3927

Figure 3 shows a nonoscillation region for equation (1.1) with Ty for any
N € N. In Figure 3, the equations of the curved liflggnd¢, are

C—Z*\/E if 0<a<l,
B= 1
—(a+1) if a>1,
C*
and )
—E\/E if 0<a<l,
B= 1
_@(a"'l) if @>1,
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respectively; and the equations of the straight liigand ¢z areB = a/c* andg =
—a/c*, respectively, where* = 0.7854. It is easy to prove that if(B) is in the area
surrounded by two straight lings and¢3, namely, the light grey part, then all non-
trivial solutions of (1.1) are nonoscillatory (see Section 3 for details). Theorem 1.1
guarantees that the nonoscillation region for equation (1.1) is more wider than this
area.

2 Nonoscillation theorem by using phase plane analysis

We consider the second-ordeffdrential equation
y" +alt)y’ +b(t)y =0, (2.1)

where the prime meargydt anda, b: [0,c) — R are continuous functions. Equa-
tion (2.1) has naturally the trivial solutiop= 0. We can divide the other solutions
into two groups as follows. A nontrivial solutianpof (2.1) is said to bescillatory

if it has an infinite number of zeros. Otherwise, the nontrivial solution is said to be
nonoscillatory Hence, a nonoscillatory solutionof (2.1) is eventually positive or
eventually negative.

Equation (2.1) is a typical object of research in the qualitative theory of ordinary
differential equations, because it often appears as an important model in natural sci-
ence, applied science and technology. To judge whether a solution is oscillatory or
nonoscillatory is an important theme in the qualitative theory of (2.1). Since Sturm’s
separation theorem holds in equation (2.1), nonoscillatory solutions do not coexist
with oscillatory solutions.

A lot of effort has been made to findfigient conditions which guarantee that all
nontrivial solutions of (2.1) (and more general nonlinear equations) are nonoscilla-
tory (resp., oscillatory). For example, see[1, 5, 11, 28, 33-37] and the references cited
therein. Such conditions are expressed by several kinds of integration that are written
by using the cofficientsa andb of (2.1). However, in general, we cannot seek the
concrete integration for givemandb. In this section, we give a flicient condition
for nonoscillation of (2.1) which can be chequed without using the integration. We
will pay attention to the parameter cunat), b(t)) instead of the integration.

Letd andh be any real numbers satisfying<d < h. Define

T =T(hd)={(uv): 2h—-d<u<2h+d and 0<v < hu-h?}.
The trapezoid is contained in the domain
U ={(uv): u>0 and 0<v < u%/4).

In fact, if (u,v) € T, thenu>2h—-d >h> 0 and

2 2
0gushu—h2=“2—(“z—hu+h2)
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Hence, (,v) € U. By taking the trapezoidal domaih into account, we obtain the
following result.

Theorem 2.1 Suppose that there exist numberand§ with y > § > 0 such that

(a(t).b(t)) € T(y.9) (2.2)

for t syficiently large Then all nontrivial solutions of2.1) are nonoscillatory

Proof of Theoren2.1 By way of contradiction, we suppose that equation (2.1) has an
oscillatory solution. Then, from Sturm’s separation theorem, we see that all nontrivial
solutions of (2.1) are oscillatory. Let= . Then, equation (2.1) becomes the planar
linear system

y =z

Z =-b(t)y-a(t)z
Since all nontrivial solutions of (2.1) are oscillatory, these derivatives are also oscilla-
tory. Hence, judging from the vector field of (2.1), we conclude that all positive orbits

of (2.3) rotate in a clockwise direction about the origin infinitely many times.
Condition (2.2) means that there exists &isiently largetg such that

(2.3)

O<y<2y-é6<at)y<2y+6
0 < b(t) < ya(t) —y? (2.4)

for t > tg. Sincea(t) is bounded, we can define

and

Up = supa(t) and vp=yup—y? (2.5)
t>tg
We choose & > tp so thata(t;) = up. Note thatt; may beco. Since the trapezoidal
domainT(y,6) is closed, we see thaud,b(t1)) € T(y,8). From (2.4) and (2.5) it
follows that
0<b(ty) < )/Uo—yz = 0.

We here consider the autonomous system
y=z

(2.6)
Z = —voy — UpZ

From (2.5), we see that system (2.6) has a solution

(y(®).21) = (-7, ye ).

Hence, the solution curve is given ky —yy for y < 0. This curve is in the second
guadrant
Q2={(y.9:y<0<2.
Since
Y, o
Up Uo Uo
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we can define the sectorial domain

D={(y,2): y<0 and—(vo/Up)y < z< —yy} C Qo.

Let P be any point inD. We denote b;r 2.6) (P) the positive orbit of (2.6) starting
at the pointP. Note that system (2.6) is autonomous By the uniqueness of solutions
of initial value problemsr 2.6) (P) does not cross the solution curze- —yy in D.
Taking account of the vector fleld of (2.6)Rywe see thaf 2.6) (P) does not intersect
the straight linez = —(vo/Up)y and approaches the origin throu@h

Consider the positive orbit of (2.3) starting from the pdihatt = 7 > tg. We
express this positive orbit by, .(P). Let us compareF(Jf 23) (P) with F(2 6)(P). It
follows from (2.5) that(t) < up %or t > tg. Hence, by (2.4) we have

vo —b(t) = yuo -y - bi(t)
> ya(t)—y*—b(t) = 0
fort > tg. Using (2.4) and (2.5) again, we see thatjiff) € R, then
b(t)y + a(t)z = voy + Uoz—- (vo = b(t))y — (o —a(t))z
—b(t)

> voy + uoz+ ——7—(up—a(t)z

= voy + UpZ+ (a(t) y— bi/t))

> voy + UpZ

for t > t. Hence, we obtain

B b(t)y + a(t)z o _voy+ UpZ
z
From this inequality it turns out that
(1) the slope 0T+ 3)(P) is steeper than the slopeE& 6)(P) at the pointP;

<0 fortx>ty.

2 r @ 3)(P) andF+2 6)(P) do not have a common point R

Hence F‘;_S (P) runs under";, 6) (P), and thereforer (P) does not intersect the
solution curvez_ -yyinR I-ﬁowever this contradlctst e above-mentioned conclu-
sion thatr(+ (P) goes around the origin clockwise. Thus, all nontrivial solutions of

(2.1) are nonoscnlatory The proof of Theorem 2.1 is complete. O

3 Proof of the main theorem

We denote byR the nonoscillation region defined by inequality (1.5). kdbe an
arbitrary number larger than 2 and Rt be the region defined by

a c(k-2) c'k-2)\* . c(k-2)\?
bl < ¢ (CKZ Tk 8‘”( Ck ) 'fOS‘K(W)’
e 2ck-2) . c'(k—2)\2
E*-'——(C*k)z if CYZ( C'k )
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Before proving Theorem 1.1, we will show that
R= U Re. (3.1)
k>2
For this purpose, we consider the curve

a ci(k-2) ci(k-2)\% . ci(k—2)\?

. e (C*k)2 + — Ck &H(—C*k ) |f0§a<(—C*k ) .
a  2c(k-2) o ci(k-2)\?
o TR ' a‘( C'k )

This curve passes through the point

* 2 *
c(k—Z)) c(k—Z)] 3.3)

(ao(k),ﬂo<k))=(( ) o

and it is a concave curve on the interval({® (k — 2)/(C*k))?] and a straight line on
the interval [€*(k—2)/(C*k))2 ). Since

lim M_i<i(l

. _ im B@=Bao)

3k-2) a—ag-0  a—aqp ’
this curve has a sharp corner at the poins, o). From (3.3), we see that the point
(o, B0) moves on the curvg = v/a/C* with the change ok > 2. Note that

2(k-2)

2 s 2 for k> 2
and the equality holds only whén= 4. Hence, the straight lin@= «/c* + ¢*/(2C*)?
is located above the other straight ligies «/c* + 2¢* (k—2)/(C*k)? with 2 < k < 4 and

k> 4. The curve8 = va/C* is connected with the straight lifge= a/c* +¢*/(2C*)?
smoothly at the point

(@0(4).80(4)) = ((c"/(2C"))%.¢*/(2(C)?)).

In the case whefi < 0, we can use the same argument as in the case gvhéh We
therefore conclude that the regiis the union for alk > 4 of Ry (see Figure 4).
The relation (3.1) means that i&(8) € R, then there exists & > 2 such that

(@,B) € Rq,. Let

r-Hforl-) ol fsl-2l-Au] oo

and¢ = C*ko< - —) Consider equation (2.1) with

a—ag+0 a—qQo c*

0<

a() = 2y ko[- )OO
(3.5)
00 = [y~ (5 2)e0) ~ s~ 2ot -+t
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05 1.0 15 207

Fig. 4 The curves defined by (3.2) wheh= 0.7854,C*=0.3927 ank = 2.5,3,3.5,4,5

It turns out that

2 2
220+ 2a)-a+pel) = Y2 ko= 2 Jyc+ 2 (- 2 ey
5 2ot -a+pett)

(- lo-gle0] 55
—a+Bc(t)
= b(t).

X= yexp(% fota(f)dr).

X’ + (- a +Bc(t))x = (y" +a(t)y + (%az(t) + %a’(t) —a+ ﬂc(t)) y)

1 t
= d
xexp( 5 j; a(r) T)

t
=(y" +a(t)y’ +b(t)y) exp(% j(; a(T)dT).

Define

Then, we have

Hence, all nontrivial solutions of (1.1) are nonoscillatory if and only if those of (2.1)
are nonoscillatory under the assumption (3.5).
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By using Theorem 2.1, we can prove our main theorem which was presented in
Section 1.
Proof of Theorenl.1 If @ =0, then it follows from (1.5) tha® = 0. In this case, it is
clear that all nontrivial solutions of (1.1) are nonoscillatory. Hence, we only need to
consider the case when> 0. Let

s=t-1 and Zs) = x(t).

Then, we can transform equation (1.1) into

2
S—S: +(—a—-pc(9)z=0

which has the same form as equation (1.1). Hence, we only deal with the case when
B=0.1f a>c'B, then

—a+pct) < —a+C'B<0

for t sufficiently large. Hence, by virtue of Sturm’s comparison theorem, all nontrivial
solutions of (1.1) are nonoscillatory (see the light grey part in Figure 3). Thus, the
only remaining case isQ a < ¢*8.

Since O< a < ¢*B, we see that

o<s-cfp-{)
Herfp-g)eerlp- ) ol )l

We will cheque whether thag(t),b(t)) given by (3.5) satisfies condition (2.2). Put
u = a(t) andv = b(t). Then it is clear that

2y—0<uU<2y+9.
By (3.4), we have

-2} o«

2
tho(p- L)y (e -0+ 2 (5- 2 2y
-2} a3 2J-ass
g &)y e+ 2 s- 2 e

-2 (5b-2)-)o

v=72—C*ko(ﬁ—%)7—C*

+c*

+c*
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From the assumption (1.3), we see thatO. It also follows from (3.5) that

O<v=— i (ko( ——)—ﬂ)C(t)—a/

s“—z—( ~c[2(s-2)-4).

4
Hence, we conclude that the parameter cua(®,p(t)) is included in the the domain

2(s-2) /3‘)}

Let A(2y —6,y? —y8) andB(2y + 6,y° +y5) be two points in they,v)-plane. Note
that the pointsA andB are on the straight line=yu—+»?2. Since the line = yu—+2
is the tangent to the quadratic cunve u?/4 at the point (2,7?), the vertical distance
between the line segmeAB and the curve = u?/4 is less than or equal #%/4.

We will show that the line segme#tB is located above the quadratic curve

--felso-2)-)
v="7 )5
To this end, we have only to verify that
6% 1., o \\? .| Ko a
Toalcrl-g)) <e-c|3-5)4 9
because this quadratic curve is convex. Since

7|

2
=q(U,0):2y-6<u<2y+¢§ and O<usu—— a-c
4

- &)-B= 5 (¢ ko~ 28~ Kaa).

there are two cases to be considered:
(i) a<c'B<koa/(ko-2);
(i) c*B=koa/(ko—2).

Recall that the curve defined by (3.2) is concave ferd< (c*(k—2)/(C*k))?. Hence,
the regiorR, N{(a,8): 0< @ < c*B} is divided into two parts. One is the region defined

by

ko . (c*(ko—Z))2
= |f 0 <a< - E
LPYE clo-2) Ckoz 3.7)
c o 20(0-2) a>(C*(ko—2))
c* (C*ko)z - C*ko :

The other is the region defined by

koo a c'(ko- 2) c(ko 2)
; — )Sﬁs E_ (C*ko)z C* \/8(1 ) (3-8)

for 0 < @ < (c*(ko — 2)/(C*ko))? (see Figure 5).
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B
35} /

3.0
2.5 y

,
2.0¢ / y
,

1.0f

0.5’ ///

05 1.0 15 20%

Fig. 5 The region defined by (3.7) (light grey part) and the region defined by (3.8) (dark grey part) when
c*=0.7854,C* = 0.3927 andcky = 4

Case (). < "B < koa/ (ko — 2). In this case,,p) is in the region given by (3.7).
As shown in Figure 5, the parametersindg satisfy that

v 2¢(ko—2)
0<B_E* < —(C*ko)z .

Hence, we obtain

slerolp-2)f - Senorle-2)fo-2)
< C*(ko—z)(ﬁ_g)

2 c*
ocl3p-2)
-o-cfsfo-2)]

namely, the inequality (3.6).
Case (ii):c*B = koar/ (ko — 2). From (3.8) it follows that

, ay C(ko-2) ct(ko—2)\?



14 J. Sugie

Hence, we obtain

el 2)f a2

4 2 c )
conclp-ges- ST )

C*

co-e{Sp-2)-4
-o-cfsfe-2)-]

namely, the inequality (3.6).
By the above-mentioned argument, it turns out that

ScT(y,9).

We therefore conclude that
(a(t),b(t)) € T(y,9)

for t sufficiently large; that is, condition (2.2) holds. Thus, by means of Theorem 2.1,
all nontrivial solutions of (2.1) are nonoscillatory under the assumption (3.5), and
therefore, those of (1.1) are nonoscillatory. O

4 Simulation and discussion

Consider the discontinuousftrential equation
X' +(—a+Bf(t))x=0, (4.2)

where f is the piece-wise constant function given in Section 1. Equation (4.1) is a
kind of Meissner’s equation. There are many studies on the stability theory regarding
more general Meissner equations. For example, refer to [8, 12, 14, 21, 24, 27].

Solutions of (4.1) satisfy the second-order linedfadential equation with a con-
stant coéficient,

X'l'+(—a+%,8)X1=0, 2(m-1)<t<2m-1 (4.2)

and .
X +(-a-7B%=0,  2m-l<t<2m (4.3)

with me N. There are four cases to be considered:

Q) —a+ zﬁ >0and-a- E,B >0, namelya <0 andi"a <B<- ila;
4 4 bd b
2) —a+ zﬁ <0and-a- E,B > 0, namelyg < ﬂﬂ andg < - ilﬁ;
4 4 b4 T
3) —a+ zﬁ >0and-a- E,B <0, namelyg > f,b’ andg > - il/5’;
4 4 b/ T

4) —a+ zﬁs 0and-a- E,BS 0, namelya > 0 and- fa <p< ﬂa.
4 4 b/d b8
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Case (1): Equations (4.2) and (4.3) have solutions

x1(t) = Asin(t y=a +78/4) + Beos(t - a +75/4)

and
xo(t) = Csin(t -« — n/4) + Dcos(t y—a - 78/4),
respectively.
Case (2): Equations (4.2) and (4.3) have solutions
x1(t) = Aexp(t v — nB/4) + Bexp(~t ya - 75/4)
and

xo(t) = Csin(t - a - n/4) + Dcos(t y—a - 78/4),

respectively.
Case (3): Equations (4.2) and (4.3) have solutions

x1(t) = Asin(t y=a +78/4) + Beos(t - a + 75/4)
and
Xo(t) = Cexp(t va +78/4) + Dexp(—t /o + 75/4),

respectively.
Case (4): Equations (4.2) and (4.3) have solutions

x1(t) = Aexp(t vl — nB/4) + Bexp(—t ya - 75/4)
and
Xo(t) = Cexp(t ya +78/4) + Dexp(—t /o + 75/4),

respectively.
Here,A, B, C andD are any real numbers. Since each solution of (4.1) is a com-
bination of solutions of (4.2) and (4.3), we see that

(@) if @ <0 and 4/n < B < —4a/n, then all nontrivial solutions of (4.1) are oscilla-
tory;

(b) if @ >0 and-4a/n < B < da/n, then all nontrivial solutions of (4.1) are nonoscil-
latory.

However, in the other cases, we cannot immediately decide whether all nontrivial
solutions of (4.1) are oscillatory or not.
Itis clear thaf(t)| < 7/4 fort > 0. Since

j:f(s)ds=

(r/4)t-n(m-1)/2 if 2(m-1)<t<2m-1,

—(m/4)t+mm/2 if 2m-1<t<2m
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with me N, we see thaC =0 andC = /4. Hence, we may choosg4 andr/8 asc*
andC*, respectively. Theorem 1.1 infers that if

8 .
—a if0<a<l,
n

1Bl <
4 4
—a+- if a>1,
T T
then all nontrivial solutions of (4.1) are nonoscillatory.
Recall that the Ce&so summatioy is a good approximation of the step function
f. For this reason, we can expect that the asymptotic behaviour of a solution of (4.1)

is very near to that of the solution of
X'+ (—a+BTn()x=0 (4.4)

satisfying the same initial condition. We confirm this expectation by simulation. In
the left part of Figure 6, we draw two solution orbits of (4.1) and (4.4) Witk 5;

in the right part of Figure 6, we draw two solution orbits of (4.1) and (4.4) with
N = 20. In either part, the lower curve represents the solution of (4.1) satisfying the
initial condition (X(0), x'(0)) = (0,1), and the upper curve represents the solution of
(4.4) satisfying the same initial condition. As shown in Figure 6, the upper curve
approaches the lower curveldsncreases. If we draw the solution orbit of (4.4) with

N = 30, we cannot distinguish between the upper curve and the lower curve.

x N=5 x N =20
1500+ 1500+
1000+ 1000+
500+ 500+
ot o1

2 4 6 8 10 12 2 4 6 8 10 12

Fig. 6 Comparison between the solutions of (4.1) and (4.4) satisfying the initial condioy X' (0)) =
(0,1) whena = 2 andB = 20/n

Recently, Ishibashi and the author [15] have considered the second-afder di
ential equations
X"+ (—a+Bcospt))x=0 (4.5)

and
X"+ (—a+Bsinfpt))x=0, (4.6)



Nonoscillation of Mathieu’s equation 17

wherea, 8 andp are real parameters apd> 0, and reported the following results.

Theorem A If
Bl=pV2a+a for a>0, (4.7)

then all nontrivial solutions 0{4.5) (or (4.6)) are oscillatory

Theorem B. If

1Bl <

then all nontrivial solutions 0{4.5) (or (4.6)) are nonoscillatory

p«gﬁ +a forax0, (4.8)

They proved Theorems A and B by using an oscillation theorem given by Sugie
and Matsumura [29, Theorem 3.1] and a nonoscillation theorem given by Kwong and
Wong [18, Theorem 1], respectively. Theorem A (or Theorem B) gives a parametric
oscillation (or nonoscillation) region for Mathieu’s equations (4.5) and (4.6). Para-
metric oscillation and nonoscillation regions have already been studied by several
researchers (for example, see [9, 16,17, 20, 30, 32]).

Comparing equation (1.1) with equation (4.5) (or (4.6)), we see that the periodic
functioncin equation (1.1) corresponds to the monomial pos(or sint)) in equa-
tion (4.5) (or (4.6)). Theorem 1.1 can be applied even if the fundatisrepresented
by many number of terms as long ass periodic of mean value zero. This is the
feature of Theorem 1.1 that Theorems A and B do not have. Of course, we can apply
Theorem 1.1 to equations (4.5) and (4.6). In the case wfigr cospt) (or sinft)),
we may regard 1 and/g asc* andC*, respectively. Hence, from Theorem 1.1, we
see that if

p\a if0<a< %pz,
1Bl < (4.9)
a/+1- 2 jf a>1- 2
2P 2 2P5
then all nontrivial solutions of (4.5) (or (4.6)) are nonoscillatory. Let us compare
inequalities (4.8) and (4.9). #f = 1 andB = p = 4, then the inequality (4.9) is satisfied
because
O<a=1<4 and B=4=4xVi=p+a.

However, condition (4.8) does not hold. In fact,

4v2x1 pV2a
5 +1= 5 +a.

Finally, let us apply Theorem 1.1 to theffidirential equation

B=4>2V2+1=

X" +(—a+Bcos(pt))x = 0. (4.10)

It is clear thatc* = 1. Since

t 1 . 3 .
Lcosf’(,os)d& ESln(\?pt)-f- " sin(ot),
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we see tha€ = —2/(3p) andC = 2/(3p). It follows thatC* = (C - C)/2 = 2/(3p)

t
IC(t)| = |f c(s)ds{ <C* fort=0.
0
Hence, condition (1.5) becomes

3 . 9 ,
5P Va if0<a< I
1Bl <
a+ gp2 if @>—p?
16 16
For example, itx = 1,8 = 18 andp = 12, then the inequality (4.11) holds because

3x12

5 Vi=18=35.

1.1 ¥ % o
0S(Y—1<81—E and 7\/&—

Hence, from Theorem 1.1 it turns out that all nontrivial solutions of (4.10) are nonoscil-
latory (see Figure 7).

400
300
200

100

Fig. 7 The solution of (4.10) satisfying the initial conditior(Q), x'(0)) = (0,1) whena = 1,8 = 18 and
p=12

In contrast to the above situation, all nontrivial solutions of (4.5) are oscillatory
whena = 1,8 =18 andp = 12 (see Figure 8). In fact,

B=18>12V2x1+1=pV2a+a,

namely, condition (4.7) is satisfied. Hence, Theorem A is available.

As can be seen from the above comparison of equations (4.5) and (4.10), para-
metric nonoscillation region about,(8) spreads as the value 6f decreases pro-
vided thatc* is a constant value. For example,dt) = coS(pt), thenc* = 1 and
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X

4,

VAR VA

—4F

Fig. 8 The solution of (4.5) satisfying the initial conditiow(), X' (0)) = (0,1) whena =1, 8= 18 and
p=12

C* = 8/(15); if c(t) = cos (pt), thenc* = 1 andC* = 16/(350). Hence, condition
(1.5) becomes

1—85,0\/5 ifOSa<£5p2,

256
18l <
L2255, 225,
“Tose” U Y= 256"
and
35 1225
— if 0<a<——p?
e’ Ve MOse<goes
18l <
L1225, . 1225,
YT 024" " Y= 10247
respectively.

ly
40/ ls
ly
30} b
2}
10
510 15 20 25¢
710,

Fig. 9 The curves defined by (3.2) wheh= 0.7854,C* = 0.3927 anck = 2.5,3,3.5,4,5
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Figure 9 shows parametric nonoscillation regions abeyg)(for the diferential
equation
X" + (—a+Bcos™ Y pt))x =0, (4.11)

wherem=1,2,3,4. The equations of the curved linés ¢», {3 and¢, are

4/ if 0<a<4,

ﬂ:
a+4 if a>4,
6va if0<a<9,
B:
a+9 if a>9,
15 _ 225
B_ 7\/& IfOSa<1—6,
- L2285 . 225
“T6 Y160
and 3 1225
— < J—
5 « if 0<a< 64
- Q1225 1225
“T 64 “="6a "

respectively. Parametric nonoscillation region for equation (4.11) spreads out like a
fan with increase ofn and covers the half-plar{éx,3): @ > 0 andg € R} asmtends
to infinity.
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