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Nonoscillation of Mathieu’s equation whose coefficient is
a finite Fourier series approximating a square wave
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Abstract Parametric nonoscillation region is given for the Mathieu-type differential
equation

x′′+ (−α+βc(t))x= 0,

whereα andβ are real parameters. Oscillation problem about a kind of Meissner’s
equation is also discussed. The obtained result is proved by using Sturm’s comparison
theorem and phase plane analysis of the second-order differential equation

y′′+a(t)y′+b(t)y = 0,

wherea, b: [0,∞)→ R are continuous functions. The feature of the result is the ease
of chequing whether the obtained condition is satisfied or not. Parametric nonoscilla-
tion region about (α,β) and some solution orbits are drawn to help understand the
result.
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1 Introduction

As known well, the function

f (t) =

 π/4 if 0 ≤ t < 1,

−π/4 if 1 ≤ t < 2
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with f (t) = f (t+2) can be expanded to the Fourier series

∞∑
n=1

sin((2n−1)π t)
2n−1

.

The function f expresses a square wave with period 2. Sincef is a discontinuous
function, theNth partial sum of the Fourier series

SN(t) =
N∑

n=1

sin((2n−1)π t)
2n−1

converges to the square wave functionf for each fixedt but not uniformly int. Also,
the Gibbs phenomenon occurs in the neighbourhood of the points of discontinuities.
Since

SN(t) = π
∫ t

0

N∑
n=1

cos((2n−1)π s)ds=
π

2

∫ t

0

sin(2Nπ s)
sin(π s)

ds,

it has local extreme values att = k/(2N) with k ∈ Z butk is not a multiple of 2N. The
maximum value ofSN is

SN(1/(2N)) =
π

2

∫ t1

0

sin(2Nπ s)
sin(π s)

ds=
1
2

∫ π

0

τ/(2N)
sin(τ/(2N))

sinτ
τ

dτ.

Hence, the peak value of the Gibbs phenomenon is

lim
N→∞

SN(1/(2N)) =
1
2

∫ π

0

sinτ
τ

dτ = 0.925968526. . . .

Since limt→0+ f (t) = π/4, the overshoot is∣∣∣∣∣π4 − 1
2

∫ π

0

sinτ
τ

dτ
∣∣∣∣∣ = 0.140570362. . . .

The undershoot is the same (see Figure 1). The Gibbs phenomenon never disappears
even if the numberN of terms of the finite Fourier seriesSN is very large. In an actual
simulation, we cannot makeN infinite. Hence, the upper and lower bounds ofSN are
not sharp.

The Gibbs phenomenon has been recognised as a kind of noise in the field of
digital signal processing. Hence, this is an undesirable phenomenon. For this reason,
various ideas are carried out to avoid this phenomenon. For example, the Gibbs phe-
nomenon is known to be improved by using a smooth method of Cesàro summation
of Fourier series. Define

TN(t) =
1
N

N∑
n=1

Sn(t) =
1
N

N∑
n=1

n∑
k=1

sin((2k−1)π t)
2k−1

.

Then, limN→∞TN(t) = f (t). The Gibbs phenomenon does not happen for the Cesàro
summationTN. This means that the upper (resp., lower) bound ofTN approachesπ/4
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Fig. 1 The graph of the finite Fourier seriesSN(t) whenN = 10 andN = 20

(resp.,−π/4) from above (resp., below) asN→∞ (see Figure 2). Hence, we see that
for any sufficiently smallε > 0, there exists anN ∈ N such that

|TN(t)| < π/4+ε < 1

for t ∈ R.
Let p be a periodic function on [0,∞). The functionp is said to be periodic of

mean value zeroif p is not identically zero and∫ ω

0
p(t)dt= 0,

whereω is the period ofp. Note that any indefinite integral ofp is also a periodic
function with the same period as that ofp.
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Fig. 2 The graph of the Cesàro summationTN whenN = 5 andN = 10

In this paper, we consider the second-order differential equation

x′′+ (−α+βc(t))x= 0, (1.1)

where the prime denotesd/dt, the parametersα and β are real numbers, and the
functionc is continuous on [0,∞) and periodic of mean value zero. Sincec is periodic,
it is bounded. Letc∗ be an upper bound of|c|; that is,

|c(t)| ≤ c∗ for t ≥ 0. (1.2)
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Sincec is periodic with mean value zero, the integral function
∫ t

0
c(s)dshas a lower

boundC and an upper boundC. Let C∗ = (C−C)/2 and define

C(t) =
∫ t

0
c(s)ds− 1

2

(
C+C

)
.

Then, we have
|C(t)| ≤C∗ for t ≥ 0. (1.3)

The trigonometric functions sinπt and cosπt are periodic with period 2. We may
regard 1 and 1/π asc∗ andC∗, respectively. The finite Fourier seriesSN andTN also
satisfy the assumptions ofc andC. As was shown above, ifc= SN, thenc∗= 0.9260
andC∗= 0.3927 forN sufficiently large; ifc= TN, thenc∗= 0.7854 andC∗= 0.3927
for N sufficiently large.

Equation (1.1) may be considered as a generalised Mathieu equation. Mathieu’s
equation often describes parametric excitation. Parametric excitation is a famous vi-
bration phenomenon that appears in mechanical engineering, electrical engineering,
acoustical engineering, and so on. This vibration phenomenon is caused by the pe-
riodic change of the parameters which is inherent in the mechanical system. For ex-
ample, the position of a pivot point, the arm length of a pendulum, the inductance of
an electrical circuit, and the tension of a string are cited as those parameters. We can
find various concrete examples of Mathieu’s equation in [2–4, 6, 10, 22, 23, 25, 26].

Let us consider an inverted pendulum whose pivot point vibrates periodically
in the vertical direction. In the case that the motion speed of the pivot point is the
functionC, we can write the motion equation of the inverted pendulum as

x′′+ (−α+βc(t))sinx= 0.

Here, we ignore the friction at the pivot point. Equation (1.1) is the linear approxima-
tion of this motion equation.

The purpose of this paper is to present parametric conditions on (α,β) which
guarantees that all nontrivial solutions of (1.1) are nonoscillatory (see Section 2 for
the definitions).

Sincec is a periodic function, equation (1.1) belongs to Hill’s equation

x′′+g(t)x= 0, (1.4)

whereg is a periodic function. About applications of Hill’s equation, refer to [13,
21, 23]. We can find various results about the oscillation problem of (1.4) in many
literatures (for example, see [7, 18–20, 31]). It is well-known that ifg is periodic of
mean value zero, then all nontrivial solutions of (1.4) are oscillatory (for the proof,
see [7, p. 25]). Hence, ifα = 0 andβ , 0, then all nontrivial solutions of (1.1) are
oscillatory. It follows from Sturm’s comparison theorem that ifα < 0 andβ , 0, then
all nontrivial solutions of (1.1) are oscillatory. It is clear that

(a) if α < 0 andβ = 0, then all nontrivial solutions of (1.1) are oscillatory;

(b) if α = 0 andβ = 0, then all nontrivial solutions of (1.1) are nonoscillatory.
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Thus, a necessary condition for all nontrivial solutions of (1.1) to be nonoscillatoy is
thatα ≥ 0. Our result is as follows.

Theorem 1.1 If

|β| ≤


1

C∗
√
α if 0≤ α <

(
c∗

2C∗

)2
,

α

c∗
+

c∗

4(C∗)2
if α ≥

(
c∗

2C∗

)2
,

(1.5)

then all nontrivial solutions of(1.1)are nonoscillatory.

Theorem 1.1 has a feature that it is very easy to cheque. For a given valueα ≥ 0,
we can seek a value ofβ satisfying condition (1.5) immediately. It is also manageable
to obtain a positive value ofα satisfying condition (1.5) for a given valueβ ∈ R.
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Fig. 3 Parametric nonoscillation region about (α,β) given by (1.5) whenc∗= 0.7854 andC∗= 0.3927

Figure 3 shows a nonoscillation region for equation (1.1) withc = TN for any
N ∈ N. In Figure 3, the equations of the curved linesℓ1 andℓ4 are

β =


2
c∗
√
α if 0 ≤ α < 1,

1
c∗

(α+1) if α ≥ 1,
and

β =


− 2

c∗
√
α if 0 ≤ α < 1,

− 1
c∗

(α+1) if α ≥ 1,
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respectively; and the equations of the straight linesℓ2 andℓ3 areβ = α/c∗ andβ =
−α/c∗, respectively, wherec∗= 0.7854. It is easy to prove that if (α,β) is in the area
surrounded by two straight linesℓ2 andℓ3, namely, the light grey part, then all non-
trivial solutions of (1.1) are nonoscillatory (see Section 3 for details). Theorem 1.1
guarantees that the nonoscillation region for equation (1.1) is more wider than this
area.

2 Nonoscillation theorem by using phase plane analysis

We consider the second-order differential equation

y′′+a(t)y′+b(t)y = 0, (2.1)

where the prime meansd/dt anda, b : [0,∞)→ R are continuous functions. Equa-
tion (2.1) has naturally the trivial solutiony ≡ 0. We can divide the other solutions
into two groups as follows. A nontrivial solutiony of (2.1) is said to beoscillatory
if it has an infinite number of zeros. Otherwise, the nontrivial solution is said to be
nonoscillatory. Hence, a nonoscillatory solutiony of (2.1) is eventually positive or
eventually negative.

Equation (2.1) is a typical object of research in the qualitative theory of ordinary
differential equations, because it often appears as an important model in natural sci-
ence, applied science and technology. To judge whether a solution is oscillatory or
nonoscillatory is an important theme in the qualitative theory of (2.1). Since Sturm’s
separation theorem holds in equation (2.1), nonoscillatory solutions do not coexist
with oscillatory solutions.

A lot of effort has been made to find sufficient conditions which guarantee that all
nontrivial solutions of (2.1) (and more general nonlinear equations) are nonoscilla-
tory (resp., oscillatory). For example, see [1, 5, 11, 28, 33–37] and the references cited
therein. Such conditions are expressed by several kinds of integration that are written
by using the coefficientsa andb of (2.1). However, in general, we cannot seek the
concrete integration for givena andb. In this section, we give a sufficient condition
for nonoscillation of (2.1) which can be chequed without using the integration. We
will pay attention to the parameter curve (a(t),b(t)) instead of the integration.

Let d andh be any real numbers satisfying 0< d ≤ h. Define

T = T(h,d) =
{
(u, v) : 2h−d ≤ u≤ 2h+d and 0≤ v ≤ hu−h2}.

The trapezoidT is contained in the domain

U =
{
(u, v) : u≥ 0 and 0≤ v ≤ u2/4

}
.

In fact, if (u, v) ∈ T, thenu≥ 2h−d ≥ h> 0 and

0≤ v ≤ hu−h2 =
u2

4
−

(
u2

4
−hu+h2

)
=

u2

4
−

(u
2
−h

)2
≤ u2

4
.
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Hence, (u, v) ∈ U. By taking the trapezoidal domainT into account, we obtain the
following result.

Theorem 2.1 Suppose that there exist numbersγ andδ with γ ≥ δ > 0 such that

(a(t),b(t)) ∈ T(γ,δ) (2.2)

for t sufficiently large. Then all nontrivial solutions of(2.1)are nonoscillatory.

Proof of Theorem2.1 By way of contradiction, we suppose that equation (2.1) has an
oscillatory solution. Then, from Sturm’s separation theorem, we see that all nontrivial
solutions of (2.1) are oscillatory. Letz= y′. Then, equation (2.1) becomes the planar
linear system

y′ = z,

z′ = −b(t)y−a(t)z.
(2.3)

Since all nontrivial solutions of (2.1) are oscillatory, these derivatives are also oscilla-
tory. Hence, judging from the vector field of (2.1), we conclude that all positive orbits
of (2.3) rotate in a clockwise direction about the origin infinitely many times.

Condition (2.2) means that there exists a sufficiently larget0 such that

0< γ ≤ 2γ−δ ≤ a(t) ≤ 2γ+δ
and

0≤ b(t) ≤ γa(t)−γ2 (2.4)

for t ≥ t0. Sincea(t) is bounded, we can define

u0 = sup
t≥t0

a(t) and v0 = γu0−γ2 (2.5)

We choose at1 ≥ t0 so thata(t1) = u0. Note thatt1 may be∞. Since the trapezoidal
domainT(γ,δ) is closed, we see that (u0,b(t1)) ∈ T(γ,δ). From (2.4) and (2.5) it
follows that

0≤ b(t1) ≤ γu0−γ2 = v0.

We here consider the autonomous system

y′ = z,

z′ = −v0y−u0z.
(2.6)

From (2.5), we see that system (2.6) has a solution

(y(t),z(t)) = (−e−γt,γe−γt).

Hence, the solution curve is given byz= −γy for y < 0. This curve is in the second
quadrant

Q2 =
{
(y,z) : y < 0< z

}
.

Since

γ =
γ2

u0
+
v0
u0
>
v0
u0
,
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we can define the sectorial domain

D =
{
(y,z) : y < 0 and− (v0/u0)y < z< −γy} ⊂ Q2.

Let P be any point inD. We denote byΓ+(2.6)(P) the positive orbit of (2.6) starting
at the pointP. Note that system (2.6) is autonomous. By the uniqueness of solutions
of initial value problems,Γ+(2.6)(P) does not cross the solution curvez= −γy in D.
Taking account of the vector field of (2.6) inR, we see thatΓ+(2.6)(P) does not intersect
the straight linez= −(v0/u0)y and approaches the origin throughD.

Consider the positive orbit of (2.3) starting from the pointP at t = τ ≥ t0. We
express this positive orbit byΓ+(2.3)(P). Let us compareΓ+(2.3)(P) with Γ+(2.6)(P). It
follows from (2.5) thata(t) ≤ u0 for t ≥ t0. Hence, by (2.4) we have

v0−b(t) = γu0−γ2−b(t)

≥ γa(t)−γ2−b(t) ≥ 0

for t ≥ t0. Using (2.4) and (2.5) again, we see that if (y,z) ∈ R, then

b(t)y+a(t)z= v0y+u0z− (v0−b(t))y− (u0−a(t))z

> v0y+u0z+
v0−b(t)
γ

z− (u0−a(t))z

= v0y+u0z+

(
a(t)−γ− b(t)

γ

)
z

≥ v0y+u0z

for t ≥ t0. Hence, we obtain

−b(t)y+a(t)z
z

< − v0y+u0z
z

< 0 for t ≥ t0.

From this inequality it turns out that

(1) the slope ofΓ+(2.3)(P) is steeper than the slope ofΓ+(2.6)(P) at the pointP;

(2) Γ+(2.3)(P) andΓ+(2.6)(P) do not have a common point inR.

Hence,Γ+(2.3)(P) runs underΓ+(2.6)(P), and therefore,Γ+(2.3)(P) does not intersect the
solution curvez= −γy in R. However, this contradicts the above-mentioned conclu-
sion thatΓ+(2.3)(P) goes around the origin clockwise. Thus, all nontrivial solutions of
(2.1) are nonoscillatory. The proof of Theorem 2.1 is complete. ⊓⊔

3 Proof of the main theorem

We denote byR the nonoscillation region defined by inequality (1.5). Letk be an
arbitrary number larger than 2 and letRk be the region defined by

|β| ≤


α

c∗
− c∗(k−2)

(C∗k)2
+

1
C∗k

√
8α+

(
c∗(k−2)

C∗k

)2

if 0 ≤ α <
(
c∗(k−2)

C∗k

)2

,

α

c∗
+

2c∗(k−2)

(C∗k)2
if α ≥

(
c∗(k−2)

C∗k

)2

.
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Before proving Theorem 1.1, we will show that

R=
∪
k>2

Rk. (3.1)

For this purpose, we consider the curve

β =


α

c∗
− c∗(k−2)

(C∗k)2
+

1
C∗k

√
8α+

(
c∗(k−2)

C∗k

)2

if 0 ≤ α <
(
c∗(k−2)

C∗k

)2

,

α

c∗
+

2c∗(k−2)

(C∗k)2
if α ≥

(
c∗(k−2)

C∗k

)2

.

(3.2)

This curve passes through the point

(α0(k),β0(k)) =

(c∗(k−2)
C∗k

)2

,
c∗(k−2)

(C∗)2k

 , (3.3)

and it is a concave curve on the interval [0, (c∗(k−2)/(C∗k))2] and a straight line on
the interval [(c∗(k−2)/(C∗k))2,∞). Since

lim
α→α0+0

β(α)−β(α0)
α−α0

=
1
c∗
<

1
c∗

(
1+

4
3(k−2)

)
= lim
α→α0−0

β(α)−β(α0)
α−α0

,

this curve has a sharp corner at the point (α0,β0). From (3.3), we see that the point
(α0,β0) moves on the curveβ =

√
α/C∗ with the change ofk> 2. Note that

0<
2(k−2)

k2
≤ 1

4
for k> 2

and the equality holds only whenk= 4. Hence, the straight lineβ = α/c∗+c∗/(2C∗)2

is located above the other straight linesβ=α/c∗+2c∗(k−2)/(C∗k)2 with 2< k< 4 and
k> 4. The curveβ =

√
α/C∗ is connected with the straight lineβ = α/c∗+c∗/(2C∗)2

smoothly at the point

(α0(4),β0(4))=
(
(c∗/(2C∗))2,c∗/(2(C∗)2)

)
.

In the case whenβ < 0, we can use the same argument as in the case whenβ ≥ 0. We
therefore conclude that the regionR is the union for allk> 4 of Rk (see Figure 4).

The relation (3.1) means that if (α,β) ∈ R, then there exists ak0 > 2 such that
(α,β) ∈ Rk0. Let

γ =
1
2

C∗k0

(
β− α

c∗

)
+

√(
C∗k0

(
β− α

c∗

))2
+4

∣∣∣∣∣k0

2

(
β− α

c∗

)
−β

∣∣∣∣∣+4α

 (3.4)

andδ =C∗k0

(
β− α

c∗

)
. Consider equation (2.1) with

a(t) = 2γ−k0

(
β− α

c∗

)
C(t),

b(t) =

(
γ− k0

2

(
β− α

c∗

)
C(t)

)2

− k0

2

(
β− α

c∗

)
c(t)−α+βc(t).

(3.5)
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Fig. 4 The curves defined by (3.2) whenc∗= 0.7854,C∗= 0.3927 andk= 2.5,3,3.5,4,5

It turns out that

1
4

a2(t)+
1
2

a′(t)−α+βc(t) = γ2−k0

(
β− α

c∗

)
γC(t)+

k2
0

4

(
β− α

c∗

)2
C2(t)

− k0

2

(
β− α

c∗

)
c(t)−α+βc(t)

=

(
γ− k0

2

(
β− α

c∗

)
C(t)

)2

− k0

2

(
β− α

c∗

)
c(t)

−α+βc(t)

= b(t).

Define

x= yexp

(
1
2

∫ t

0
a(τ)dτ

)
.

Then, we have

x′′+ (−α+βc(t))x=

(
y′′+a(t)y′+

(
1
4

a2(t)+
1
2

a′(t)−α+βc(t)

)
y

)
×exp

(
1
2

∫ t

0
a(τ)dτ

)
=

(
y′′+a(t)y′+b(t)y

)
exp

(
1
2

∫ t

0
a(τ)dτ

)
.

Hence, all nontrivial solutions of (1.1) are nonoscillatory if and only if those of (2.1)
are nonoscillatory under the assumption (3.5).
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By using Theorem 2.1, we can prove our main theorem which was presented in
Section 1.
Proof of Theorem1.1 If α = 0, then it follows from (1.5) thatβ = 0. In this case, it is
clear that all nontrivial solutions of (1.1) are nonoscillatory. Hence, we only need to
consider the case whenα > 0. Let

s= t−1 and z(s) = x(t).

Then, we can transform equation (1.1) into

d2z

ds2
+ (−α−βc(s))z= 0

which has the same form as equation (1.1). Hence, we only deal with the case when
β ≥ 0. If α ≥ c∗β, then

−α+βc(t) ≤ −α+c∗β ≤ 0

for t sufficiently large. Hence, by virtue of Sturm’s comparison theorem, all nontrivial
solutions of (1.1) are nonoscillatory (see the light grey part in Figure 3). Thus, the
only remaining case is 0< α < c∗β.

Since 0< α < c∗β, we see that

0< δ =C∗k0

(
β− α

c∗

)
<

1
2

C∗k0

(
β− α

c∗

)
+

√(
C∗k0

(
β− α

c∗

))2
+4

∣∣∣∣∣k0

2

(
β− α

c∗

)
−β

∣∣∣∣∣+4α

 = γ.
We will cheque whether that (a(t),b(t)) given by (3.5) satisfies condition (2.2). Put
u= a(t) andv = b(t). Then it is clear that

2γ−δ ≤ u≤ 2γ+δ.

By (3.4), we have

v = γ2−C∗k0

(
β− α

c∗

)
γ−c∗

∣∣∣∣∣k0

2

(
β− α

c∗

)
−β

∣∣∣∣∣−α
+k0

(
β− α

c∗

)
γ (C∗−C(t))+

k2
0

4

(
β− α

c∗

)2
C2(t)

+c∗
∣∣∣∣∣k0

2

(
β− α

c∗

)
−β

∣∣∣∣∣+α− k0

2

(
β− α

c∗

)
c(t)−α+βc(t)

= k0

(
β− α

c∗

)
γ (C∗−C(t))+

k2
0

4

(
β− α

c∗

)2
C2(t)

+c∗
∣∣∣∣∣k0

2

(
β− α

c∗

)
−β

∣∣∣∣∣− (
k0

2

(
β− α

c∗

)
−β

)
c(t).
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From the assumption (1.3), we see thatv ≥ 0. It also follows from (3.5) that

0≤ v = u2

4
−

(
k0

2

(
β− α

c∗

)
−β

)
c(t)−α

≤ u2

4
−

(
α−c∗

∣∣∣∣∣k0

2

(
β− α

c∗

)
−β

∣∣∣∣∣) .
Hence, we conclude that the parameter curve (a(t),b(t)) is included in the the domain

S =

{
(u, v) : 2γ−δ ≤ u≤ 2γ+δ and 0< v ≤ u2

4
−

(
α−c∗

∣∣∣∣∣k0

2

(
β− α

c∗

)
−β

∣∣∣∣∣)} .
Let A(2γ−δ,γ2−γδ) andB(2γ+δ,γ2+γδ) be two points in the (u, v)-plane. Note

that the pointsA andB are on the straight linev = γu−γ2. Since the linev = γu−γ2

is the tangent to the quadratic curvev= u2/4 at the point (2γ,γ2), the vertical distance
between the line segmentABand the curvev = u2/4 is less than or equal toδ2/4.

We will show that the line segmentAB is located above the quadratic curve

v =
u2

4
−

(
α−c∗

∣∣∣∣∣k0

2

(
β− α

c∗

)
−β

∣∣∣∣∣) .
To this end, we have only to verify that

δ2

4
=

1
4

(
C∗k0

(
β− α

c∗

))2
≤ α−c∗

∣∣∣∣∣k0

2

(
β− α

c∗

)
−β

∣∣∣∣∣ , (3.6)

because this quadratic curve is convex. Since

k0

2

(
β− α

c∗

)
−β = 1

2c∗
(
c∗(k0−2)β−k0α

)
,

there are two cases to be considered:

(i) α < c∗β < k0α/(k0−2);

(ii) c∗β ≥ k0α/(k0−2).

Recall that the curve defined by (3.2) is concave for 0≤α≤ (c∗(k−2)/(C∗k))2. Hence,
the regionRk0∩{(α,β): 0<α< c∗β} is divided into two parts. One is the region defined
by

α

c∗
< β ≤


k0α

c∗(k0−2)
if 0 ≤ α <

(
c∗(k0−2)

C∗k0

)2

,

α

c∗
+

2c∗(k0−2)

(C∗k0)2
if α ≥

(
c∗(k0−2)

C∗k0

)2

.

(3.7)

The other is the region defined by

k0α

c∗(k0−2)
≤ β ≤ α

c∗
− c∗(k0−2)

(C∗k0)2
+

1
C∗k0

√
8α+

(
c∗(k0−2)

C∗k0

)2

(3.8)

for 0≤ α ≤ (c∗(k0−2)/(C∗k0))2 (see Figure 5).
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α

β

0.5

0.5

1.0

1.0

1.5

1.5

2.0

2.0

2.5

3.0

3.5

Fig. 5 The region defined by (3.7) (light grey part) and the region defined by (3.8) (dark grey part) when
c∗= 0.7854,C∗= 0.3927 andk0 = 4

Case (i):α < c∗β < k0α/(k0−2). In this case, (α,β) is in the region given by (3.7).
As shown in Figure 5, the parametersα andβ satisfy that

0< β− α
c∗
≤ 2c∗(k0−2)

(C∗k0)2
.

Hence, we obtain

1
4

(
C∗k0

(
β− α

c∗

))2
=

1
4
(
C∗k0

)2 (
β− α

c∗

) (
β− α

c∗

)
≤ c∗(k0−2)

2

(
β− α

c∗

)
= α−c∗

(
β− k0

2

(
β− α

c∗

))
= α−c∗

∣∣∣∣∣k0

2

(
β− α

c∗

)
−β

∣∣∣∣∣ ,
namely, the inequality (3.6).

Case (ii):c∗β ≥ k0α/(k0−2). From (3.8) it follows that

C∗k0

(
β− α

c∗

)
+

c∗(k0−2)
C∗k0

≤

√
8α+

(
c∗(k0−2)

C∗k0

)2

.
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Hence, we obtain

1
4

(
C∗k0

(
β− α

c∗

))2
= 2α− c∗(k0−2)

2

(
β− α

c∗

)
= α−c∗

(
β− α

c∗

)
+c∗β− c∗(k0−2)

2

(
β− α

c∗

)
= α−c∗

(
k0

2

(
β− α

c∗

)
−β

)
= α−c∗

∣∣∣∣∣k0

2

(
β− α

c∗

)
−β

∣∣∣∣∣ ,
namely, the inequality (3.6).

By the above-mentioned argument, it turns out that

S ⊂ T(γ,δ).

We therefore conclude that
(a(t),b(t)) ∈ T(γ,δ)

for t sufficiently large; that is, condition (2.2) holds. Thus, by means of Theorem 2.1,
all nontrivial solutions of (2.1) are nonoscillatory under the assumption (3.5), and
therefore, those of (1.1) are nonoscillatory. ⊓⊔

4 Simulation and discussion

Consider the discontinuous differential equation

x′′+ (−α+β f (t))x= 0, (4.1)

where f is the piece-wise constant function given in Section 1. Equation (4.1) is a
kind of Meissner’s equation. There are many studies on the stability theory regarding
more general Meissner equations. For example, refer to [8, 12, 14, 21, 24, 27].

Solutions of (4.1) satisfy the second-order linear differential equation with a con-
stant coefficient,

x′′1 + (−α+ π
4
β)x1 = 0, 2(m−1)≤ t < 2m−1 (4.2)

and
x′′2 + (−α− π

4
β)x2 = 0, 2m−1≤ t < 2m (4.3)

with m∈ N. There are four cases to be considered:

(1) −α+ π
4
β > 0 and−α− π

4
β > 0, namely,α < 0 and

4
π
α < β < − 4

π
α;

(2) −α+ π
4
β ≤ 0 and−α− π

4
β > 0, namely,β ≤ 4

π
β andβ < − 4

π
β;

(3) −α+ π
4
β > 0 and−α− π

4
β ≤ 0, namely,β >

4
π
β andβ ≥ − 4

π
β;

(4) −α+ π
4
β ≤ 0 and−α− π

4
β ≤ 0, namely,α ≥ 0 and− 4

π
α ≤ β ≤ 4

π
α.



Nonoscillation of Mathieu’s equation 15

Case (1): Equations (4.2) and (4.3) have solutions

x1(t) = Asin
(
t
√
−α+πβ/4

)
+Bcos

(
t
√
−α+πβ/4

)
and

x2(t) =Csin
(
t
√
−α−πβ/4

)
+Dcos

(
t
√
−α−πβ/4

)
,

respectively.
Case (2): Equations (4.2) and (4.3) have solutions

x1(t) = Aexp
(
t
√
α−πβ/4

)
+Bexp

(
− t

√
α−πβ/4

)
and

x2(t) =Csin
(
t
√
−α−πβ/4

)
+Dcos

(
t
√
−α−πβ/4

)
,

respectively.
Case (3): Equations (4.2) and (4.3) have solutions

x1(t) = Asin
(
t
√
−α+πβ/4

)
+Bcos

(
t
√
−α+πβ/4

)
and

x2(t) =Cexp
(
t
√
α+πβ/4

)
+Dexp

(
− t

√
α+πβ/4

)
,

respectively.
Case (4): Equations (4.2) and (4.3) have solutions

x1(t) = Aexp
(
t
√
α−πβ/4

)
+Bexp

(
− t

√
α−πβ/4

)
and

x2(t) =Cexp
(
t
√
α+πβ/4

)
+Dexp

(
− t

√
α+πβ/4

)
,

respectively.
Here,A, B, C andD are any real numbers. Since each solution of (4.1) is a com-

bination of solutions of (4.2) and (4.3), we see that

(a) if α < 0 and 4α/π < β < −4α/π, then all nontrivial solutions of (4.1) are oscilla-
tory;

(b) if α ≥ 0 and−4α/π < β < 4α/π, then all nontrivial solutions of (4.1) are nonoscil-
latory.

However, in the other cases, we cannot immediately decide whether all nontrivial
solutions of (4.1) are oscillatory or not.

It is clear that| f (t)| ≤ π/4 for t ≥ 0. Since

∫ t

0
f (s)ds=


(π/4)t−π(m−1)/2 if 2(m−1)≤ t < 2m−1,

− (π/4)t+πm/2 if 2m−1≤ t < 2m
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with m∈N, we see thatC = 0 andC = π/4. Hence, we may chooseπ/4 andπ/8 asc∗

andC∗, respectively. Theorem 1.1 infers that if

|β| ≤


8
π

√
α if 0 ≤ α < 1,

4
π
α+

4
π

if α ≥ 1,

then all nontrivial solutions of (4.1) are nonoscillatory.
Recall that the Cesàro summationTN is a good approximation of the step function

f . For this reason, we can expect that the asymptotic behaviour of a solution of (4.1)
is very near to that of the solution of

x′′+ (−α+βTN(t))x= 0 (4.4)

satisfying the same initial condition. We confirm this expectation by simulation. In
the left part of Figure 6, we draw two solution orbits of (4.1) and (4.4) withN = 5;
in the right part of Figure 6, we draw two solution orbits of (4.1) and (4.4) with
N = 20. In either part, the lower curve represents the solution of (4.1) satisfying the
initial condition (x(0), x′(0)) = (0,1), and the upper curve represents the solution of
(4.4) satisfying the same initial condition. As shown in Figure 6, the upper curve
approaches the lower curve asN increases. If we draw the solution orbit of (4.4) with
N = 30, we cannot distinguish between the upper curve and the lower curve.

t

x N = 5

2 4 6 8 10 12

500

1000

1500

t

x N = 20

2 4 6 8 10 12

500

1000

1500

Fig. 6 Comparison between the solutions of (4.1) and (4.4) satisfying the initial condition (x(0), x′(0))=
(0,1) whenα = 2 andβ = 20/π

Recently, Ishibashi and the author [15] have considered the second-order differ-
ential equations

x′′+ (−α+βcos(ρt))x= 0 (4.5)

and
x′′+ (−α+βsin(ρt))x= 0, (4.6)



Nonoscillation of Mathieu’s equation 17

whereα, β andρ are real parameters andρ > 0, and reported the following results.

Theorem A If
|β| ≥ ρ

√
2α+α for α ≥ 0, (4.7)

then all nontrivial solutions of(4.5) (or (4.6))are oscillatory.

Theorem B. If

|β| ≤ ρ
√

2α
2
+α for α ≥ 0, (4.8)

then all nontrivial solutions of(4.5) (or (4.6))are nonoscillatory.

They proved Theorems A and B by using an oscillation theorem given by Sugie
and Matsumura [29, Theorem 3.1] and a nonoscillation theorem given by Kwong and
Wong [18, Theorem 1], respectively. Theorem A (or Theorem B) gives a parametric
oscillation (or nonoscillation) region for Mathieu’s equations (4.5) and (4.6). Para-
metric oscillation and nonoscillation regions have already been studied by several
researchers (for example, see [9, 16, 17, 20, 30, 32]).

Comparing equation (1.1) with equation (4.5) (or (4.6)), we see that the periodic
functionc in equation (1.1) corresponds to the monomial cos(ρ t) (or sin(ρ t)) in equa-
tion (4.5) (or (4.6)). Theorem 1.1 can be applied even if the functionc is represented
by many number of terms as long asc is periodic of mean value zero. This is the
feature of Theorem 1.1 that Theorems A and B do not have. Of course, we can apply
Theorem 1.1 to equations (4.5) and (4.6). In the case whenc(t) = cos(ρt) (or sin(ρt)),
we may regard 1 and 1/ρ asc∗ andC∗, respectively. Hence, from Theorem 1.1, we
see that if

|β| ≤


ρ
√
α if 0 ≤ α < 1

4
ρ2,

α+
1
4
ρ2 if α ≥ 1

4
ρ2,

(4.9)

then all nontrivial solutions of (4.5) (or (4.6)) are nonoscillatory. Let us compare
inequalities (4.8) and (4.9). Ifα = 1 andβ = ρ = 4, then the inequality (4.9) is satisfied
because

0≤ α = 1< 4 and β = 4= 4×
√

1= ρ
√
α.

However, condition (4.8) does not hold. In fact,

β = 4> 2
√

2+1=
4
√

2×1
2

+1=
ρ
√

2α
2
+α.

Finally, let us apply Theorem 1.1 to the differential equation

x′′+ (−α+βcos3(ρt))x= 0. (4.10)

It is clear thatc∗ = 1. Since∫ t

0
cos3(ρs)ds=

1
12ρ

sin(3ρt)+
3
4ρ

sin(ρt),
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we see thatC = −2/(3ρ) andC = 2/(3ρ). It follows thatC∗ = (C−C)/2= 2/(3ρ)

|C(t)| =
∣∣∣∣∣∣
∫ t

0
c(s)ds

∣∣∣∣∣∣ ≤C∗ for t ≥ 0.

Hence, condition (1.5) becomes

|β| ≤


3
2
ρ
√
α if 0 ≤ α < 9

16
ρ2,

α+
9
16
ρ2 if α ≥ 9

16
ρ2.

For example, ifα = 1, β = 18 andρ = 12, then the inequality (4.11) holds because

0≤ α = 1< 81=
9ρ2

16
and

3ρ
2

√
α =

3×12
2

√
1= 18= β.

Hence, from Theorem 1.1 it turns out that all nontrivial solutions of (4.10) are nonoscil-
latory (see Figure 7).

t

x

2 4 6 8 10

100

200

300

400

Fig. 7 The solution of (4.10) satisfying the initial condition (x(0), x′(0))= (0,1) whenα = 1, β = 18 and
ρ = 12

In contrast to the above situation, all nontrivial solutions of (4.5) are oscillatory
whenα = 1, β = 18 andρ = 12 (see Figure 8). In fact,

β = 18> 12
√

2×1+1= ρ
√

2α+α,

namely, condition (4.7) is satisfied. Hence, Theorem A is available.
As can be seen from the above comparison of equations (4.5) and (4.10), para-

metric nonoscillation region about (α,β) spreads as the value ofC∗ decreases pro-
vided thatc∗ is a constant value. For example, ifc(t) = cos5(ρt), thenc∗ = 1 and
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−

−

t

x

2

2

4

4

10 20 30 40

Fig. 8 The solution of (4.5) satisfying the initial condition (x(0), x′(0)) = (0,1) whenα = 1, β = 18 and
ρ = 12

C∗ = 8/(15ρ); if c(t) = cos7(ρt), thenc∗ = 1 andC∗ = 16/(35ρ). Hence, condition
(1.5) becomes

|β| ≤


15
8
ρ
√
α if 0 ≤ α < 225

256
ρ2,

α+
225
256
ρ2 if α ≥ 225

256
ρ2.

and

|β| ≤


35
16
ρ
√
α if 0 ≤ α < 1225

1024
ρ2,

α+
1225
1024

ρ2 if α ≥ 1225
1024

ρ2.

respectively.

−

α

β

ℓ1

ℓ2

ℓ3

ℓ4

5

10

10

10 15

20

20 25

30

40

Fig. 9 The curves defined by (3.2) whenc∗= 0.7854,C∗= 0.3927 andk= 2.5,3,3.5,4,5
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Figure 9 shows parametric nonoscillation regions about (α,β) for the differential
equation

x′′+ (−α+βcos2m−1(ρt))x= 0, (4.11)

wherem= 1,2,3,4. The equations of the curved linesℓ1, ℓ2, ℓ3 andℓ4 are

β =


4
√
α if 0 ≤ α < 4,

α+4 if α ≥ 4,

β =


6
√
α if 0 ≤ α < 9,

α+9 if α ≥ 9,

β =


15
2

√
α if 0 ≤ α < 225

16
,

α+
225
16

if α ≥ 225
16
,

and

β =


35
4

√
α if 0 ≤ α < 1225

64
,

α+
1225
64

if α ≥ 1225
64
,

respectively. Parametric nonoscillation region for equation (4.11) spreads out like a
fan with increase ofmand covers the half-plane

{
(α,β) : α > 0 and β ∈ R} asm tends

to infinity.
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