Nonoscillation of Mathieu equations with two frequencies

Applied Mathematics and Computation 346 巻 491-499 頁 2019-04 発行
アクセス数 : 1127
ダウンロード数 : 97

今月のアクセス数 : 41
今月のダウンロード数 : 2
ファイル情報(添付)
タイトル
Nonoscillation of Mathieu equations with two frequencies
著者
Ishibashi Kazuki
収録物名
Applied Mathematics and Computation
346
開始ページ 491
終了ページ 499
収録物識別子
ISSN 0096-3003
内容記述
その他
As is well known, Mathieu’s equation is a representative of mathematical models describing
parametric excitation phenomena. This paper deals with the oscillation problem for
Mathieu’s equation with two frequencies. The ratio of these two frequencies is not necessarily
a rational number. When the ratio is an irrational number, the coefficient of Mathieu’s
equation is is quasi-periodic, but not periodic. For this reason, the basic knowledge
for linear periodic systems such as Floquet theory is not useful. Whether all solutions of
Mathieu’s equation oscillate or not is determined by parameters and frequencies. Our results
provide parametric conditions to guarantee that all solutions are nonoscillatory. The
advantage of the obtained parametric conditions is that it can be easily checked. Parametric
nonoscillation region is drawn to understand these results easily. Finally, several
simulations are carried out to clarify the remaining problems.
主題
Nonoscillation ( その他)
Parametric excitation ( その他)
Mathieu’s equation ( その他)
Frequencies ( その他)
Quasi-periodic ( その他)
言語
英語
資源タイプ 学術雑誌論文
出版者
Elsevier
発行日 2019-04
出版タイプ Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの)
アクセス権 オープンアクセス
関連情報
[DOI] 10.1016/j.amc.2018.10.072