ファイル情報(添付) | |
タイトル |
Duality Theorems for Separable Convex Programming without Qualifications
|
著者 | |
収録物名 |
Journal of optimization theory and applications
|
巻 | 172 |
号 | 2 |
開始ページ | 669 |
終了ページ | 683 |
収録物識別子 |
ISSN 00223239
|
内容記述 |
その他
In the research of mathematical programming, duality theorems are essential and important elements. Recently, Lagrange duality theorems for separable convex programming have been studied. Tseng proves that there is no duality gap in Lagrange duality for separable convex programming without any qualifications. In other words, although the infimum value of the primal problem equals to the supremum value of the Lagrange dual problem, Lagrange multiplier does not always exist. Jeyakumar and Li prove that Lagrange multiplier always exists without any qualifications for separable sublinear programming. Furthermore, Jeyakumar and Li introduce a necessary and sufficient constraint qualification for Lagrange duality theorem for separable convex programming. However, separable convex constraints do not always satisfy the constraint qualification, that is, Lagrange duality does not always hold for separable convex programming. In this paper, we study duality theorems for separable convex programming without any qualifications. We show that a separable convex inequality system always satisfies the closed cone constraint qualification for quasiconvex programming and investigate a Lagrange-type duality theorem for separable convex programming. In addition, we introduce a duality theorem and a necessary and sufficient optimality condition for a separable convex programming problem, whose constraints do not satisfy the Slater condition.
|
主題 | |
言語 |
英語
|
資源タイプ | 学術雑誌論文 |
出版者 |
Springer US
|
発行日 | 2017-02 |
権利情報 |
© Springer Science+Business Media New York 2016. The final publication is available at Springer via http://dx.doi.org/10.1007/s10957-016-1003-1.
|
出版タイプ | Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの) |
アクセス権 | オープンアクセス |
関連情報 |
[DOI] 10.1007/s10957-016-1003-1
[NCID] AA00253056
|