ラダー近似で解ける相対論的束縛模型とそれがラダー近似について意味すること

アクセス数 : 1200
ダウンロード数 : 77

今月のアクセス数 : 101
今月のダウンロード数 : 1
ファイル情報(添付)
c0040031r011.pdf 1010 KB エンバーゴ : 2002-05-18
タイトル
ラダー近似で解ける相対論的束縛模型とそれがラダー近似について意味すること
タイトル
A Soluvable Composite Model m the Ladder Approximation and Its Implications about the Approximation
タイトル 読み
ラダー キンジ デ トケル ソウタイロンテキ ソクバク モケイ ト ソレガ ラダー キンジ ニ ツイテ イミスル コト
著者
猪野 武敏
収録物名
島根大学総合理工学部紀要. シリーズA
31
開始ページ 165
終了ページ 179
収録物識別子
ISSN 13427113
内容記述
その他
We make a study to assess the accuracy of the ladder approximation, by employing a solvable twobodyb positron-theoretical composite model which is defined in terms of the Bethe-Salpeter equation in the ladder approxmation with various Fermi-type direct instantaneous interactions in 1 + 1 dimensional world. In this model, we obtain two sets of even- and odd-parity bound-state solutions. One set is obtained with a kind of renormalization of the coupling constant, and the other is gotten without any renormalization. We examine the wave functions of all the obtained bound-state solutions in detail, as they allow the probabilistic interpretation. Judging from some considerations, we have the following consequences: (A) the wave functton of the odd-parity bound-state solution obtained with a renormalization includes a remarkable and undesired feature (against a natural requirement) in the cases where the binding energy is large. This remarkable and undesired feature is owing to the inadeqeacy of the ladder approximation. (B) As for the remaining three bound-state solutions, qualitative features of their wave functions are acceptable. We suppose and emphasize that the ladder approximation (in the real world) may yield even undesired features against the physical requirements concerned with the wave functions (including the 3 + 1-dimensional generalization of a natural requirement stated above), at least in the case where the coupling constants of short-range interactions are renormalized.
言語
英語
資源タイプ 紀要論文
出版者
島根大学総合理工学部
Interdisciplinary Faculty of Science and Engineering, Shimane University
発行日 1997-12-26
アクセス権 オープンアクセス
関連情報
[NCID] AA11157087
備考 30-41+ / 1997-2007