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Abstract 

We make a study to assess the accuracy of the ladder approximation, by employing a solvable two-

body positron-theoretical composite model which is defined in terms of the Bethe-Salpeter equation in the 

ladder_approxmation with various Fermi-type direct instantaneous interactions in I + I dimensional world 

In this model, we obtain two sets of even- and odd-parity bound-state solutions . One set is obtained with a 

kind of renormalization of the coupling constant, and the other is gotten without any renormalization. We 

examine the wave functions of all the obtained bound-state solutions in d__ etail, as they allow the probabilis-

tic interpretation. Judging from some considerations, we have the following consequences: (A) the wave 

functton of the odd-parity bound-state solution obtained with a renormalization includes a remarkable and 

undesired feature (against a natural requirement) in the cases where the binding energy is large. This 

remarkable and undesired feature is owing to the inadeqeacy of the ladder approximation. (B) As for the 

remaming three bound-state solutions, qualitative features of their wave functions are acceptable. We sup-

pose and emphasize that the ladder approximation (in the real world) may yield even undesired features 

against the physical requirements concerned with the wave functions (including the 3 + I~iimensional 

generalization of a natural requirement stated above) , at least in the case where the coupling constants of 

short-range mteracti'ons are renormalized 

S1. Introduction 

Gl6ckle, Nogami and Fukuil) (GNF) have presented an analyiically solvable model of 

composite system, which satisfies all the requirements of quantum mechanics and special relativ-

ity, including the Lorents contraction of the composite system. The GNF model is defined in 

terms of the two-body Dirac equation in I + I dimensional space-time with a direct instantane-

ous mteraction. The GNF equation is not manifestly covariant as it refers to a specific Lorentz 

frame, but its relativistic covariance is guaranteed by the existence of the Lorentz boost opera-

tor. Unfortunately, that model is based on the single electron theory instead of the positron the-

o ry . 

Munakata, Nagamura and the author2) have argued the problem of rewriting the GNF 

model in a manifestly covariant way and in a positron-theoretical treatment . They have shown 

that th~ GNF model is rewritten in a manifestyle covariant form of the Bethe-Salpeter 
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equation3) in the ladder approximation with the Fermi-type interaction, provided that the 

single-electron-theoretical treatment is adopted. They have found that when the positron-theo-

retical treatment is adopted, another problem due to a divergence occurs 

Recently, the author4) has found an invariant manner (that is, a kind of renormalization 

of the coupling constant) to deal with the above problem due to a divergence and obtained an 

exactly solvable positron-theoretical composite model by taking account of the conjecture 

about the above problem (due to a divergence) presented by Gl6ckle, Nogami and Toyama5) 

(GNT) . (The work of Ref. 4) is referred to as I hereafter.) The conjecture by GNT is that even 

if the couplmg constant is small, the instantaneous contact interaction in the form of the space-

time delta-function is very strong.*) 

Solvable models are, in general, useful in some aspects. As for the composite model (in 

1 + I dimensions) obtained in I, its bound-state solution has provided a prescription for 

modifying a form factor from a static model (in the real world) to include the Lorentz contrac-

tion effect, as seen in I, by the help of the fact that the Lorentz contraction occurs only in the 

direction of the motion of the bound state. * *) The model on I may serve also for other aspects 

About the accuracy of the ladder approximation, the uneasiness has been felt.6) It is necessary 

to examine and assess not only eigenvalues but also wave functions resulting from the ladder ap-

proxunation 

In this paper, we employ the composite model in I to make a study for assessing the accura-

cy of the ladder approximation. By the help of some considerations, wave functions of bound-

state solutions are examined and judged 

In S2, we state the model used here. Differently from I where the vector-type Fernuj interac-

tion is adopted, various Fermi interactions are taken to allow also formations of bound-state so-

lutions without any renormalization. In S3, we obtain two sets of even- and odd-parity bound-

state solutions and examine wave functions of obtained bound-state solutions by the help of 

some considerations. We have some consequences. The consequences are summarized and dis-

cussed in S4. 

S2. The model 

We study the positron-theoretical composite systems defined in terms of the Bethe-Salpeter 

equation m the ladder approximation in I + I dimensional world 

r
 V(xl' x2) =J SF"(xl~x3)SFb(x~-X4)1(x3, x4) W(x3, x4)d2x3d2x4' (1) 

where the mteraction between particles a and b is taken to be the sum of all the Fermi-type 

*) The GNT conjecture has been presented by examining how the solutions of the Breit equation and the 

Salpeter equation behave as the interaction range is varied. As for the relativistic covariance of the 

equations wrth a finite-range interaction used by GNT, it is not guaranteed 

* *) This prescription is provided by comparing the form factor calculated from the obtained bound-

state solution with its static approximation 
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direct instantaneous mteractions in I + I dunensrons 

I(x3, x4) = i62 (x3 -x4) (gs+gpy5a7sb +gvypayPb/2) . *) (2) 

For the Drrac matnces we use 

0= ( , 1= y yo P O -1 1 O y Pa y with a 

and y5 = yoyl = a. The masses of the particles a and b are denoted by ma and mb respectively. The 

two-dimensional Feynman propagator SF(x) is defined by 

1 ~iks J 2e 2_ SF(x)=(iy+m)AF(x), iAF(x)=(27c)2 - (3) k +m 16d k 

where kx=kot_klx and k2= (ko) 2_ (kl) 2. 

We introduce the c.m. and relative coordinates and momenta 

XP maxlP+mbx2P (4a) x P=xlP~x2P' 
ma + mb ' 

PP=plP+p2P' pP mbPIP~maP2P (4b) 
ma + mb ' 

and write v(xl' x2) to be 

d2p _iPX J
-

V(xl'x2) =W(x) e~iPXE e IPxcp(P) (27c)1/2e , (5) 

separating the c.m. coordinates. Then, the Bethe-Salpeter equation for cp (p) in momentum 

space rs grven by 

cp(P) ~- Pi+ma P;2+mb I(p-k)cp(k) d2k (6) J
 ~ 2 2 2-m2 (27c)2' pl ~ma P2 b 

where plP=m~PP/ (ma+mb) +pP, p2'/=mbPP/ (ma+mb) -p/1. Here I(q) is defined by 

1
 = J - -lq(x3 x4) d2q, I(x3, x4) (2~) 2 (7) 

I(q) e 

and has no q-dependence; 

I (q) = i{gs + gp y5"y5b + gv yp" y Pb/2} . (8) 
It should be noted that the denominators of the R.H.S. of Eq. (6) have appropriate small ima-

ginary parts in accordance with Eq. (3) 

Hereafter we write P), P1, po and pl tobe 

P0=E, P P p 8 p p (9) 
*) It is noted that as there exist only three independent Fermi-type interactions in I + I dimensions, the 

interaction types of axialvector and tensor are omitted 
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and rewrite Eq. (6) as 

_ . {m.E/ (m.+ mb) +'e +H" ( pl ) } {mbE/ (m.+ mb ) - 8 +Hb (p2) } 
cP(8, P) - - I [{m.E/ (m.+ mb) +8}2-pl2~m.2] [{mbE/ (m.+mb) - 8}2-P22- mb2] 

r de' dp' x {gsP"fib+gpa"ft"abfib+gv(1 - a"ab) /2} J cp(8'. P') (lO) 
(27r)2 ' 

where pl =m~P/ (m.+ mb) +p. p2=m~P/ (m.+ mb) -P and 

H"(pl) =a~pl+p"m., Hb(p2) =abp2+pbmb. (11) 
We integrate both sides of Eq. (10) over 8, after we give m a small negative imaginary 

part. Then, this integration makes Eq. (10) become the following equation 

1
 {E-H"(pl ) ~Hb (p2) }Xp(P) = - (A +" (PI )A +b (p2) -A _" (pl )A _b ( p2) } 

27c l
:
=
 

x {gsP"fib+gpaafi"abfib+gv(1 -a"ab) /2} XP(P') dP'*), 

( 1 2) 

where A ~:a(pl) and A :!:b(p2) are the projection operators to the positive and negative energy 

states for the particles a and b respectively, 

E1 :!:Ha ( pl ) 

Ai:a(pl)~ 2El ' El=(m/+pl2)i/2 (13a) 
E2:!:Hb ( p2) 

A:1:b(p2) - 2E2 ' E2:::(mb2+p22)1/2 (13b) 

and xp(p) is 

- "-
cp(8,p) ds. 

= 

We expand the amplitude xp(p) in terms of the eigenspinors of Papb 

Xp(P) X++P(p) (;)a ({)b+x+-P(p) (;)a (:)b+x_+P(p) (:)a (;)b+x _P(p) (OY (O~b 

~ 1) ~l) ' 
(15) 

and introduce the combinatiOns 

Xf(p) X++P(p) + x-_P(p) 
X2P(p) I X++P(p) - X--P(p) 
X3P(p) = f~ X+-P(p) + x-+P(p) ' (16) 
X4P(p) X+-P(p) - X-+P(p) 

Then Eq. (12) Ieads to the following fOur integral equations 

*) The instantaneous interactiOn in the Bethe-Salpeter equatiOn was first treated by Salpeter.7) 
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π1p（ρ）＝

　　　　　16π亙02｛（ρ十σp）2＋κ2｝
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・［仇辛、あ［万し（岬・）・一（蓑1幸箒・・勿）21［・1肌（ρ）一・・炊・（ρ）1

一［万・（榊）・蓑：幸姜1（姜1幸篶・・勿）・1［・1肌（ρ）一・・肌（ρ）1

一［1万・一（榊）・一（姜：幸姜1・・幼）2ぱ閉、一・（岬わ）ρ1

・1・1州ρ）…狐（ρ）1一軸1狐（ρ）…柳一（ρ）ll・（1・・）

π。p（ρ）＝
万

16π11702｛（一ρ十σp）2＋κ2｝

・［平［万・一（岬・）・蓑責蓑1（篶幸姜1榊）・1

・［81λ・p∫・（ρ）一8。λ。pK。（ρ）ト［万。2一（柳”一物）2■91λ1pK。（ρ）一g。λ。p∫一（ρ）コ

ー（肌・吻）［・篶享篶（篶幸篶…ρ）1［・舳ρ）…λ枢一（ρ）1

宇鳴”ろ（篶幸箒・・勿）一（州・1［・1λ牝（1）・淋（1）ll，

（17b）

x。戸（ρ）＝
万

16πE02｛（ρ十∂p）2＋κ2｝

・［去［・／亙・一（蓑1幸蓑1榊）2／一（＾・）（篶幸蓑1・・勿）1

×［91λ。p∫。（ρ）一g。λ。pK。（ρ）］一（〃、十閉。）

・［・篶幸蓑1（簑幸蓑1・・勿）1［・1漱・（ρ）一・3肌（ρ）1

一［万し（肌切）・一（姜1幸姜1・・勿）21［・舳・）…脈一（ρ）1

竿［物・蓑1幸姜1／（吻・吻）・一刷11・1蜘ρ）・・肌（ρ）1l，

（17c）

舳）一、6π風。総）。十、。｝［・助［・1肌（ρ）一・・λ扱・（ρ）1

　　　　一［”島、（姜：幸蓑；・・勿）一（吻一・わ）・ll・1机（ρ）一・仙）1

　　　　一［・助・姜：幸篶／（吻・吻）・一易・／l［・1〃・（ρ）・・肌（ρ）1

　　　　・吻辛”あ［（物・吻）・一風・1［・1漱一（ρ）…肌（ρ）1l，
（17d）
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gl ~~gs+gp, g2EEgs~gp+gv' g3 ~~ -gs+gp+gv' 

A:PEJ: xr(p) dP' (i::=1'2,3,4), 

= 

+ p 

J+_ (p) E ma+mb ma+mb + 21 1/2 -

{m/+ ( a ) mbP mp (
 

{
 
mb2 + a + p ma + mb f

 m +mb 

p
 

21 1/2 ' )
 
pf 

(18) 

( 19) 

(20) 

_ (p) ~~ K+ 
ma mb 

+ 21 1/2-

( b m/ + mb2+ ma+m +p ma+m f
 

2~ 1/2 ' )
 
pf 

(21) 

When Eqs. (17a) - (17d) have the bound-state solution, they determine Eo, that is, the rest 

mass of the bound state, which is related to E and P by 

E= (E02 + p2) 1/2 (22) 
Through Eo, they determine also K2 and dp to be 

E2{E02~ (ma~ mb) 2} { (ma+ mb) 2-E02} 

dp P (ma~mb {(ma+mb) (24) E02 } . 

= 2E02 L¥ma+mb 

When bound-state solutions are found, they are normalized to be 

~
-

"
-

l(P P)X=27c(E/Eo)6(P'-P). dp dXxp'+(p)Xp(P) e~' ~ 
= = 

S3. Bound-state solutions and an examination of them about the accuracy of the 

ladder approximation 

3 . I Bound-state solutions 

Observing Eqs. (17a) - (17d) , we search bound-state solutions 

An even-parity bound-state solution obtained with a renormalization 

In the case of gl = O in Eqs. (17a) - (17d) , we have an even-parity bound-state solution 

X f ( p) = g2A2P (ma + mb) E 

167cE02{ ( P + dp) 2 + K2 } 

( )2] ma ~ mb 

x 2 ma+m P+2p K+(P) +2pJ_ (p) , (26a) E2 - (ma~mb) -Lma+mb L 

X2P(p) = g2A2P(ma+mb) ( - p+2p) P] K+ (P) 
I
[
 

_ma~mb ~ma mb E2- (ma~mb) 
167TE02{(P+dp)2+K2} ma+mb ma+mb 



A　So1uvab1e　Compos1te　Mode1mthe　Ladder　ApProxmat1on　and　Its　Imp11cat1ons　　　171

　　　・［”島わ（蓑1幸篶・十勿）一（榊）小（1）1・　　（…）

舳一、6、蓑船去筈、｝［［吻｛朋ム1炉一（篭幸篶…朴（岬・）

　　　・（篭〒箒・・勿）1・・（ρ）・［・助・箒幸篶／（吻・吻）L酬1・（ρ）1・

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　（26c）

州一、6芸嵩鳥［狐（ρ）吻÷朋わ［（州・一舳ρ）1（…）

　Therest　massEo　ofthebound－state　so1ut1on　ofEqs（26a）～（26d。）1s　detemmed　fromthe

equat1on　obtamed　by　mtegratmg　both　s1d－es　of　Eq　（26b）overρ

炸／1。。（・・・・・・・…（…））φ・
（27）

A1though　the　mtera1on　the　R　H　S　of　Eq　（27）d1verges，Eq　（27）1s　rewntten　to　be

妾／1。。／（吻。÷、。）1／。・（朋わ。÷、。）1／。1φ

”焦わ（朋篶わ・勿）

（朋・十（朋篶わ・ρ）2）1／2（…ρ・）1／・／（朋・・（”篶わ・ρ）2）I／2・（W）1／・／

　　×φ，　　　　　　　　　　　　　　　　　　　　　　　　（28）

andth1s　d1vergence1s　dea1t　w1th　by　akmd　ofrenorma11zat1on　ofthe　coup1mg　constant　Owmg

tothemamfestcovar1anceofEq（1），wecanchoosetherestfram．eofthebound　stateandhave

等・妾／1。。1（吻。÷、。）1／。・（”わ。÷、。）1／。／φ
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2｛万。し（㎜、一物）2｝1／2

｛（榊、十肋わ）2－E．2｝1／2

・［1篶；蓑1≡篶；；1…t㎝［｛研．（吻三等1絡蒜わ）し酬司

・1婁；≡1蓑1≡蓑；；；1…t・・［｛硝．（吻三篶譜訣）。．刷司1
（29）

Here　G1s　an　e丘ect1ve　coup11ng　constant

　　As　a　re1nterpretat1on　ofthe　coup11ng　constant1s　made，gμ2P／（8π）m　Eqs（26a）～（26d）

1s　subst1tuted　by　a　constant　lV’for　the　norma11zat1on

ノユ〃od∂一ρα1．1りノ汐o〃〃∂・81σ7θ801〃〃o〃oわ1α1〃θ∂w〃乃σ1rε〃07〃2σ1πσカo〃

　　In　the　case　of8・1＝0m　Eqs　（17a）～（17d），we　have　a1so　an　odd－par1ty　bound－state　so1u－

tiOn：

パ（1）一、6、簑給碁辛、｝［卜（岬・）・篶幸蓑1（蓑：幸蓑1榊）小（ρ）

　　　　一［／万・一（榊・）・一（箒幸篶・・助）21吻辛吻わ・（舳）ρ1叫）1・（…）

舳一一、6、酬篶）叫、｝［［珊一（仙一吻）つ人（1）

　　　　一（榊・）［・篶幸篶（姜1幸蓑1・・勿）1・一（ρ）1・　　（…）

〆（ρ）一一、6、酬篶）叫、｝［（吻・吻）［・簑…蓑1（箒幸篶・・勿）1五（ρ）

　　　　一［炉一（吻・吻）し（篶幸慧…ρ）21・一（ρ）1・　　　（…）

舳）一、6、蓑給去筈、｝［［”篶わ（篶幸姜；・・勿）一（榊）小（ρ）

　　　一［・助・簑幸姜1／（吻・吻）・一凪・／l・一（ρ）1・　　　（…）

　　The　e1genvalue　cond1t1on1s　g1ven　by1ntegratmg　both　s1des　ofEq．（30d）overρA1though

ad1vergence1smvo1vedsm11ar1ytoEq　（27），th1s　d1vergence1s　a1so　dea1tw1thmasm11arman－

ner　to　for　Eq　（27）In　the　rest　frame　of　the　bomd．state　we　have

簑妾！1。。／（”。÷。）耐（㎡十。）壮笛禁蒜

・［1箒；姜1≡篶；；1…t・・［｛研．（点蒜蒜あ）し酬司

・1簑≡；蓑1≡篶：；1…t・・［｛研．（吻一篶蒜蒜わ）し酬司1
（31）

As　a　remterpretat1on　of　the　coup1mg　constant1s　made　－gψ4P／（8π）m　Eqs（30a）～



A Soluvable Composite Model in the Ladder Approximation and Its Implications 173 

(30d) is substituted by a constant N for the normalization 

An even-parity bound-state solution obtained without any renormalization 

In the case of g2=g3=0 in Eqs. (17a) - (17d) , we have an even-parity bound-state solu-

tion. We state this solution by choosing the rest frame of the bound state from the beginning, as 

it is obtained without any renormalization of the coupling constant 

Assuming A~=0=0 in this case of g2=g3=0 in Eqs. (17a) - (17d) , we obtain 

glAf -o (m. + mb ) 

XP o(p) = 167rE02(P2+rc02) [{E02~(m m ) }{K+(P) Ip o} 2(m mb)P{J+(P) Ip o}], 

(32a) 

xf =0 (p) , 

m. + mb 
A P=0 

X~=0 (p) = gvll 
1 67TEo ( P2 + K02) 

x [2(m.-mb)P{K+ (P) ip=0} + {(m.+mb)2-Eo +4p }{ J+ (P) Ip o}] (32c) 
A P=0 

X~=0 (p) = gvil 
1 67c ( p2 + K02) 

x [2P{K+ (P) Ip=0}+ { (m +mb)2-E02}{ J+ (P) Ip=0}] , m. - mb 

where 

K02 ~ K2 1 p=0' (33) 
The eigenvalue condition is given by integrating both sides of Eq. (32a) over p. This in-

tegral does not diverge, because J+ (p) I p=0 is reduced to 

p
 J+ (P) Ip o (m m ) (m +p ) (m 2+p2)1/2+(m/+p2)1/2(mb2+p2) ' (34) 

We have 

2 7cE02 {E02~ (ma~ mb) 2 }1/2 

fs+p (m' + mb ) 2 
b
 

{ (ma+m )2-E02}1/2 

{E02+ (ma2~ mb2) } [
 

x IE02+(ma2~mb2) I Arctan 
IE02+ (ma2~mb2) j I {E02 ~ (ma ~ mb) 2} 1/2{ (ma + mb ) 2 -E02 } 1/2] 

{E02~ (ma2~ mb2) } I E02~ (mi-mb2) l 
+ IE02~ (ma2~mb2) I Arctan {E02~ (ma~mb)2}1/2{(ma+mb)2-E02}1/2 

+ma~mbln m ) (a, 
ma + mb mb 

(35) 

where 

gl 
gs gp (>0). fs+p=~= = (36) 
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The assumption of A~=0=0 is satisfied self-consistently in this solution, because x~=0 (p) 

of Eq. (32c) is an odd function ofp. 

An odd-parity bound-state solutionn obtained without any renormalization 

In the case of g2=g3 =0 in Eqs. (17a) - (17d) , we have also an odd-parity bound-state so-

lution without any renormalization of the coupling constant. We state this solution by choosing 

the rest frame of the bound state 

Assuming Af=0=0 in this case of g2=g3=0 in Eqs (17a) - (17d) we obtam 

X~=0(p) = glA~=0(ma+mb) 
1 67TEo ( P2 + K ~ ) 

- = J, {E02~ (ma~mb)2-4p2}{J+ (P) Ip=0}~2P{K (p) Ip o} x 
ma + mb 

glA~- o (ma + mb ) E02 XP o(p) = - 167cE02(P2+K02) o P{K_ (p) Ip=0} {E (m m ) }{J+(P) Ip o}~2ma+m 

(37b) 

glA~-o (ma2 ~ mb2 ) l XP o(p) = 167cE02(P2+lc02) ma+mb { (ma+mb)2-E02}{K_ (p) Ip=0} 2P{ J+ (P) Ip=0} + 

(37c) 

glA~-0 (ma + mb ) 1 XP o(p) = 167cEo(P2+rc02) 2P{J+(P) [p o}+ma+m {(ma+m ) h }{K (p) Ip o} 

(37d) 

The assumption of Af=0= O is satisfied self-consistently in this solution, because xf=0 (p) 

of Eq. (37a) is an odd function ofp. 

The eigenvalue condition is given by integrating both sides of Eq. (37c) over p. We have 

27cE02 { (ma + mb ) 2 - E02 } 1/2 

fs+p(ma~mb)2 {E02~ (ma~mb)2}1/2 

{E02+ (ma2~ mb2) } I E02+ (ma2~mb2) l 
Arctan x IE02+ (ma2~mb2) I {E02~ (ma~mb)2}1/2{(m +m ) E 2}1/2 

{E02~ (ma2~mb2) } I E02~ (ma2~ mb2) l 
Arctan + l E02~ (ma2~ mb2) I {E02~ (ma~ mb)2}1/2{ (ma+ mb)2-E02}1/2 

m.+mb 

- In . ma~m 
Here fs+p is taken to be fs+p< O in this solution, differently from fs+p in the solution of Eqs 

(32a) - (32d) . 

It is noted that this solution disappears in the case of ma=mb. This disappearance rs due to 

the interaction which is taken for the formation of this solution 

3 .2 An examination of the bound-state solutions about the accuracy of the ladder approxima-

tion 

The wave functions of the bound states in the present model allow the probabilistic mter-

pretation. We examine the wave functions of the above four bound-state solutions, in order to 
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obtain the information on the accuracy of the ladder approximation 

Calculating 
J
_
=
 

= 
IX{;+~(p) 12 dP' 

J
_
 

= 

= 

IX~-=-o(p) 1 2 dp, 

J
_
 

= 

= 

IX{;+=-o(p) [2dP' J:_ 
IXP=+0(p) 12dp (39) 

in each of the bound-state solutions of Eqs. (26a) - (26d) , Eqs. (30a) - (30d) and Eqs. (32a) 

- (32d) in the case of mEln.=mb*) (after performing the normalization by Eq. (25)) , we 

show numerical results in Figs. 1-3. These quantities in the bound-state solution of Eqs 

(37a) - (37d) in the case where m.-mb= 10-2 m and (m.-mb) / (m.+mb) = 10-3 are shown 

in Fig. 4. 

O.bserving Figs. I -4, we find qualitative features, which include a remarkable one. After 

some considerations, we have the followmg consequences 

( I ) The odd-parity bound-state solution obtained with a renormalization in Fig. 2 is notewor-

1.0 

0.5 

o
 

J_"* I xofli( P)12d P 

~
 

J_"*lxo__(p) 12dP 

!
 

I_""I x~_( p)1 2d P 

I_"* [xo_+( P)12d P 

Eolm 
2.0 1.5 1 .O 0.5 o

 

Fig. I . The probabilities 

J~* IX~+0(p) 12dp, J~* IX~_=_ (p) 12dp, 

J~* IX~-o(p) 12 dp and l~~ IX{-=+0 (p) 12dp 

in the even-parity bound-state solution of Eqs 

(26a) - (26d) in the text. 

*) We assume that the particles a and b belong to different' kinds 
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Frg. 2. The probabilities 

J~= IX~+~+0 (p) 12dp, I~~ IX~-=-o (p) 12dp, 

l~* ix~_o (p) 12 dp and S~= IX{-=+0 (p) 12dp 

in the odd-parity bound-state solution of Eqs 

(30a) - (30d) in the text. 

thily strange in comparison with the other solutions. Although the probability of the odd-parity 

component x++0(p) in this solution is dominative for Eo Of 2.0~Eo/m>__ I .1 in accordance 

with the natural requirement that the probability of the odd-parity component x++0(p) in the 

odd-parity bound-state solution should be dominative, this probability in this solution does not 

satisfy the natural requirement for Eo Of I . I ;~Eo/m ~~ O. This remarkable and undesired feature 

must be noticed. It is noted that the natural requirement is satisfied by the odd-parity bound-

state solution in Fig. 4 and the counter natural requirement (that the probability of the even-

parity component x++0(p) in the even-parity bound-state solution should be dominative) is 

satisfied by the even-parity bound-state solutions in Figs. I and 3 

(2) The above remarkable and undesired feature of the odd-parity bound-state solution ob-

tained with a renormalization is owing to the inadequacy of the ladder approximation. There 

are no other reasons for it m the present model 

(3) As for the other solutions in Figs. I , 3 and 4, qualitative features of their wave functions 

are acceptable 
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Frg. 3. The probabilities 

J~* IX~+0 (p) 12dp. I~= IX~_=_, ,(p) 12dp, 

l~= IXP+=0 (p) 12dp and S~* I~{-=+0 (~) 12 dp 

in the even-parity bound-stat:~ solution of Eqs 

(32a) - (32d) in the text. The values of fs+pl7T 

corresponding to those of Eo/m are also shown 

S4. Summary and discussion 

In this paper, we have made a study to assess the accuracy of the ladder approximation, by 

employing a solvable two-body positron-theoretical composite model which is defined~ in terms 

of the Bethe-Salpeter equation in the ladder approximation with various Fermi-type direct in-

stantaneous interactions in I + I dimensional world. In this model, we have =found two sets of 

even- and odd-parity bound-state solutions, one of which is obtained with a kind of renormali-

zation of the coupling constant, and the other of which is gotten without ahy.' renormalization 

We have examined the wave functions of all the obtained bound-state solutions in detail, as 

they allow the probabilistic interpretation. After some considerations, we have obtained conse-

quences, which are summarized as follows: (A) The wave function of the odd-parity bound-

state solution obtained with a renormalization contains a remarkable and undesired feature 

The probability of its odd-parity component X++0(p) for the cases of large. binding energies 

does not satisfy the natural requirement that the probability of the odd-parity, component x+ +0 

(p) in the odd-parity bound-state solution should be dominative. This reltrarkable and un-
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1.0 

O. 5 

o
 

!L~*1 ~~*tp)12dP 
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I_"" I oc~._( p)12d P 

~
 

i'..1 x0+-c p) I'2d P I
 

EolM 

1,0 0.5 Ima~mbl/M 

Frg. 4. The probabilities 

J~* IX~+0 (p) 12dp, J~= IX~_=_ (p) 12dp, 

J~~ I~P+'~-o (p) 12dp and J~* IX{-=+0 (p) 12dp 

in the odd-parity bound-state solution of Eqs 

(37a) - (37d) in the test. It is noted that 

J~= IX~+0 (p) 12dp 

is very close to 

I~_ IX~~ (p) 12dp 

for Eo/M of 2.0~Eo/M~ Im.-mb I /M, where 

M is (m.+mb) /2. 

2.0 1.5 

desired feature of the odd-parity bound-state solution obtained with a renormalization is owing 

to the inadequacy of the ladder approximation. (B) As for the other solutions, qualitative fea-

tures of their wave functions are acceptable 

We make some discussrons about the consequences 

(1) Judging from the present study, we suppose and emphasize that the ladder approximation 

(in the real world) may yield not only unsatisfactory quantitative results but also even un-

desired features against the physical requirements concerned with the wave functions, at least in 

the cases where the coupling constants of short-range interactions are renormalized. (In our 

opinion, the 3 + 1-dimensional generalization of the natural requirement stated above is a physi-

cal requirement) 

(II) We suppose that when the ladder approximation is used (in the real world) , the wave 

functions should be examined in detail at least in the cases where the coupling constants of 

short-range interactions are renormalized 



A　So1uvab1e　Compos1te　Mode1m　the　Ladder　ApProxmat1on　and　Its　Imp11cat1ons 179

1
）

2）

3
）

4
）

5
）

6）

7
）

Refe肥皿CeS

WG1ock1e，YNogam1andIFuku1，PhysRevD35（1987），584
Y　Munakata，T　Ino　and　F　Nagamura，Prog　Theor　Phys79（1988），1404

HABetheandEESa1peter，PhysRev82（1951），309
EESa1peterandHABethe，1b1d84（1951），1232
M．Ge1レMannandF．Low，ibid．84（1951），350．

T．Ino，Prog．Theor．Phys．89（1993），895．

WG1ock1e，YNoga㎜1andFMToyama，ProgTheorPhys81（1989），706
For　a　rev1ew　see，e　g，N　Nakamsh1，Prog　Theor　Phys　Supp1No43（1969），1

EESa1peterPhysRev87（1952），328


