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Abstract

We make a study to assess the accuracy of the ladder approximation, by employing a solvable two-
body positron-theoretical composite model which is defined in terms of the Bethe-Salpeter equation in the
ladder approximation with various Fermi-type direct instantaneous interactions in 1+ 1 dimensional world.
In this model, we obtain two sets of even- and odd-parity bound-state solutions. One set is obtained with a
kind of renormalization of the coupling constant, and the other is gotten without any renormalization. We
examine the wave functions of all the obtained bound-state solutions in detail, as they allow the probabilis-
tic interpretation. Judging from some considerations, we have the following consequences: (A) the wave
function of the odd-parity bound-state solution obtained with a renormalization includes a remarkable and
undesired feature (against a natural requirement) in the cases where the binding energy is large. This
remarkable and undesired feature is owing to the inadeqeacy of the ladder approximation. (B) As for the
remaining three bound-state solutions, qualitative features of their wave functions are acceptable. We sup-
pose and emphasize that the ladder approximation (in the real world) may yield even undesired features
against the physical requirements concerned with the wave functions (including the 3+ 1-dimensional
generalization of a natural requirement stated above), at least in the case where the coupling constants of
short-range interactions are renormalized.

§1. Introduction

Glockle, Nogami and Fukui’ (GNF) have presented an analytically solvable model of
composite system, which satisfies all the requirements of quantum mechanics and special relativ-
ity, including the Lorents contraction of the composite system. The GNF model is defined in
terms of the two-body Dirac equation in 1+ 1 dimensional space-time with a direct instantane-
ous interaction. The GNF equation is not manifestly covariant as it refers to a specific Lorentz
frame, but its relativistic covariance is guaranteed by the existence of the Lorentz boost opera-
tor. Unfortunately, that model is based on the single electron theory instead of the positron the-
ory.

Munakata, Nagamura and the author? have argued the problem of rewriting the GNF
model in a manifestly covariant way and in a positron-theoretical treatment. They have shown
that the GNF model is rewritten in a manifestyle covariant form of the Bethe-Salpeter



166 Taketoshi Ino

equation® in the ladder approximation with the Fermi-type interaction, provided that the
single-electron-theoretical treatment is adopted. They have found that when the positron-theo-
retical treatment is adopted, another problem due to a divergence occurs.

Recently, the author® has found an invariant manner (that is, a kind of renormalization
of the coupling constant) to deal with the above problem due to a divergence and obtained an
exactly solvable positron-theoretical composite model by taking account of the conjecture
about the above problem (due to a divergence) presented by Gléckle, Nogami and Toyama®
(GNT). (The work of Ref. 4) is referred to as I hereafter.) The conjecture by GNT is that even
if the coupling constant is small, the instantaneous contact interaction in the form of the space-
time delta-function is very strong.*)

Solvable models are, in general, useful in some aspects. As for the composite model (in
1+1 dimensions) obtained in I, its bound-state solution has provided a prescription for
modifying a form factor from a static model (in the real world) to include the Lorentz contrac-
tion effect, as seen in I, by the help of the fact that the Lorentz contraction occurs only in the
direction of the motion of the bound state.**) The model on I may serve also for other aspects.
About the accuracy of the ladder approximation, the uneasiness has been felt.® It is necessary
to examine and assess not only eigenvalues but also wave functions resulting from the ladder ap-
proximation.

In this paper, we employ the composite model in I to make a study for assessing the accura-
cy of the ladder approximation. By the help of some considerations, wave functions of bound-
state solutions are examined and judged.

In §2, we state the model used here. Differently from I where the vector-type Fermi interac-
tion is adopted, various Fermi interactions are taken to allow also formations of bound-state so-
lutions without any renormalization. In §3, we obtain two sets of even- and odd-parity bound-
state solutions and examine wave functions of obtained bound-state solutions by the help of
some considerations. We have some consequences. The consequences are summarized and dis-
cussed in §4.

§2. The model

We study the positron-theoretical composite systems defined in terms of the Bethe-Salpeter
equation in the ladder approximation in 141 dimensional world

w (x4, %) =§ S (x1—3) S (= x4) I (3, x4) W (X3, X4) d*X3d %4, (1)

where the interaction between particles ¢ and b is taken to be the sum of all the Fermi-type

*) The GNT conjecture has been presented by examining how the solutions of the Breit equation and the
Salpeter equation behave as the interaction range is varied. As for the relativistic covariance of the
equations with a finite-range interaction used by GNT, it is not guaranteed.

**) This prescription is provided by comparing the form factor calculated from the obtained bound-

state solution with its static approximation.
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direct instantaneous interactions in 141 dimensions
I(x3, x4) =162 (X3—X4) (gs+gpys"ys" + 817,y /2) ¥ (2

For the Dirac matrices we use

1 0 , 01
P=n=p= (0 _1>, V'=Po=—y with o= (1 0)

and y5=9%!=q. The masses of the particles a and b are denoted by m, and m, respectively. The
two-dimensional Feynman propagator Sr(x) is defined by

) ) 1 e—ilcx
$1) = G+ m)A5(2),  idr() =Gz | s 3)
where kx=k%%— klx and k2= (k®)2— (k!)2.
We introduce the c.m. and relative coordinates and momenta
myx*+mpx*
X“:# , XP=xt—xt, (4a)
m,+my
myp* —mgp*
P"=p1”+p2”, pu=L_p_2 s (4b)
m,,+mb
and write w(x;, x;) to be
—iPX — i) dzp —iPX
w (x, %) =y (x) e ™=\ e ™¢p(p) e X, (5)

separating the c.m. coordinates. Then, the Bethe-Salpeter equation for ¢p( p) in momentum
space is given by

()=~ e T Lo k) 8) (‘2’75 ®)
where p#=mP*/ (mg+my) +pt, pF=myPt{ (my+m;) —p*. Here I(g) is defined by
I(xs, x3) = L S I(g) e77=x) g?q, (7
and has no g-dependence;
I(g) =i{gstepys'ys’ +&vy, v*/2}. (®)

It should be noted that the denominators of the R.H.S. of Eq. (6) have appropriate small ima-
ginary parts in accordance with Eq. (3).
Hereafter we write P°, P!, p® and p! tobe
P°=E, P'=P, p’=e¢, p'=p, ©)

*) Tt is noted that as there exist only three independent Fermi-type interactions in 141 dimensions, the
interaction types of axialvector and tensor are omitted.
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and rewrite Bq. (6) as

{m,E/ (m,+m,) +e+H"(p;) HmpE/ (m,+m,) —e+H"(p,)}
U{m.El (m,+my) +&}*—p2—m21[{m,E/ (m,+m,) —e}*— py2— my*]

¢P(8, P) =—i

de' dp’
X {gsﬁaﬁb‘*'gpa"ﬂnabﬂb'*'gv(l _aﬂab) /2} S ¢P(8’, P’) (2—71)1;" s (10)
where py=m,P/(m,+m,) +p, py=myP/ (m,+my) —p and
H(p,) =api+B°m,, H®(p,) =a’p,+p’m,. (11)

We integrate both sides of Eq. (10) over &, after we give m a small negative imaginary
part. Then, this integration makes Eq. (10) become the following equation:

1
{E_H”(Pl) _Hb(Pz) Yap(p)=—— (A+a(171)/1+b(P2) —A—"(Px)/l—b(pz)}
2n

X {gsBBP+gpa’B B+ g, (1 —a"a")/Z}S xp(p") dp’®,
(12)

where A+2(p;) and A+>(p,) are the projection operators to the positive and negative energy
states for the particles @ and b respectively,

A*(py) =§i§—zﬁ Ei=(m2+pd)'h, (13a)
As*(py) =’%(-”—)— Ey=(mi+p)™, (13b)

and ze(p) is
xp(p) ES:O ¢p(e, p) de. (14)

We expand the amplitude x»(p) in terms of the eigenspinors of 242,

xp(P) =x++"(P) (;) ((l))b+X+_P(P) <(l,> (?)b+x"+P(p ) <(1)>" ((l)>b+x“P(p ) <(1)) <(1)>b’

(15)
and introduce the combinations
1" (p) 1++7(p) + x-F(p)
') | _ 1 | xes"(p) — x-F(D) (16)
17 (p) V2 | x+-F(p) + x-+P(») |°
x4 (p) x+-F(p) — x-+F(p)

Then Eq. (12) leads to the following four integral equations:

*) The instantaneous interaction in the Bethe-Salpeter equation was first treated by Salpeter.”
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P(p) = my+m,
XA = T 6B ((p+dp) -+ K2}
- FE m,—m 2
X I:EZ— (m,—my)?— ( bP+2P> :| (g1A4:"J+ (p) — 84K+ (p)]
Lm,+my m+m
i m, m,—~ »
- | E*~ (m,,—m,,>2——( P+2p) ]EglA, K. (p) —&ALT_(p)]
L my+my \m,+m,
[ [ 72 2 (Ma” )} P ]
—_ —_ — — 2 -2 —
_{E (mg—m,) ( +mbP+ o— (m,—my)p
% [g1A"J, (p) +8,AFK_(p)1—2Eplg,A"K_(p) + 8,455 (p)]:], (17a)
E
Pl) —
%" (p) 16nE{ (p+dp)?+r?}
mg+my my—my [M,—
5 £ (25 ]
I: E l: (mg—my) gy ma+mbP+ p | P
x [8145"7 (p) _ngzPK+ (P)1-[Ed— (m—my)*1[g1AK + (p) — g3 AL T~ (p) ]
—my [m,—
— a+ P
(me-t-my) I: ma+mb (m,+m,,P+2p):] (814,71 (P) +£:47K-(P)]
mg+my, Eo (m,, P+2) ( )P [ AP ( ) A
E .+ my \m,+m, P M :| 81435 K_(p) +g (p)]:l
(17b)
E
Pl —
1) = T dpy )
M1 m,—my 2 mMy—my,
S IRt
_EI: { m,+my P (mg*=my*) +mbP+2p
X [g1A3PJ+ (P) ‘“ngzPK+ (P)]—' (ma+mb)
X—P_ma—mb(ma P+2):I[ APK, (D) —g:ALT_(p)]
L ma+m, \m,+m, D 1A K4 (p) —83A4 J-(p
~[ = my)2— (m P piy )2][ AT (p) +8:A5K-(p)]
i a b m,tm, D 8141 J4+\p) T83A4 K_(p
mg+my m,—my , ) » »
| 2ot T et me )~ B) | [T K- () + AT ()],
(17¢)
m,+my
P = P _ P
xi(p) 167ZE02{(p+dp)2+1c2} [ZEP[glAs J.+ (p) —g:AK ()]
__|: E, <m,, P+2) (m, )P:I[APK()__ AFT_(p)]
mg+my \m,+m, P —my 81AK + (p) —g3ALST_(p
~[2Pp+m:+mb {(mn+mb)2_E02}] [81A1P1+(17) +g,A4. -(p]
+ma+mb [(mg+my)*—E 1 g1ASPK_ (p) +g,45" —(P)]:|, (17d)
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where
81=8s18p, &2=85—8p T8, $=—8sT & T80, (18)
ar=|" xrprap, (=1,2,3,9, (19)
m,P m,P
+p -p
_ m,+my N my+my
O e (R T e (T m)
Mq m,+mb p o mg+my P
m, mp
K.(p) 21

T e ) e )}
0 \my+m, p b \mgtmy p

When Egs. (17a)~(17d) have the bound-state solution, they determine Ey, that is, the rest
mass of the bound state, which is related to E and P by

E=(E2+PY)'2, (22)
Through Ej, they determine also x2 and dp to be
_EHE?— (my—m,)*}{ (m,+m,)*—Eg’}

2 R 23
o 4E; (23)
P /m,—my
dp=——— .t 1—Ey}. 24
=g +m,,) {(mo+ my)*— Eg?} (24)
When bound-state solutions are found, they are normalized to be
S dps dXxp* (D) xp(p) e """ P¥=2n(E/E)6(P'~P). (25)

§3. Bound-state solutions and an examination of them about the accuracy of the
ladder approximation

3.1 Bound-state solutions
Observing Eqgs. (17a) ~(17d), we search bound-state solutions.
An even-parity bo'und—state solution obtained with a renormalization
In the case of g;=0 in Eqs. (17a)~(17d), we have an even-parity bound-state solution:

P §:As" (mg+my) E
Xl (p)= 2 2 2
16nE{ (p+dp)*+x*}
m,—my 2
x [ [Ez— (my—my)*— < P+2p> :| K. (p)+2pJ_ (p):|, (26a)
mg+m, my+m,
s &AL (mgtmy) |:[ ) , Ma—my <m,—mb ) :|
= E*—(m,— T P+2p | P|K
0 D) = e e o dn ] ey o \mm, L T2 +(p)
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Ep? My—m
[ - ( ”P+2p)—(m,,—mb)PJ J_(p)],
my+my \m,+my
A" (mg+my) |:|: P { <ma—mb >2}
F(p)= E*— P+2, —(m,—m
%' (p) 167E{ (p+dp)*+x*} LLm,+m, Mmy+my P ( )

X <-:Z;—Z:P+2p> :| K.(p)+ I:ZPp-i-::Zb {(m,+mb)2—Eoz}] J- (p)],

(26b)

a b

(26¢)
84" (m,+my)E

1
Xd (p)=—16nE02{(p+dp)2+K2} |:2pK+ (p)—m.ﬂrmb [ (m,+m,)*—Eq*] J_(p):l. (26d)

The rest mass E, of the bound-state solution of Eqs. (26a)~ (26d) is determined from the
equation obtained by integrating both sides of Eq. (26b) over p:

A2P=§ (R.H.S. of Eq. (26b)) dp.

(27
Although the interal on the R.H.S. of Eq. (27) diverges, Eq. (27) is rewritten to be
87 j‘“’ { 1 n 1 }d
& J-o U tp)" (i tp) 2 &
© 1 m,+m, My—my [Ma—my \
= E*— (my—my) i ——— ( P+2, ) P}
S_w {(p+dp)*+K?} 2Ey { (mq—1my) mg+my, \m,+m, P
m,P m, P
(p+dp) <dP— ) +x? (p+dp) (dp+ > ) +
m,,-l—mb Mg+m,
XK. (p)— m.P 2\ 1/2 + m,P 2\ 1/2
T )
(m <m,,+mb+p>> (m" T\t P
m,P < m.P Ly )
_ ma+m, \m,+m, P
m.P 2\1/2 m.P 2\1/2
m,,2+ a + az 2Y1/2 {( az ( a )) 2 2 1/2}
( (ma+m,, p)) (ms+p*) mg*+ m,,+mb+p + (m+p?)
myP < myP )
—2p
_ my+my \mg+my
m,P N1/ myP N1/
S e A A PP
(mb per— (my*+p?) my’+ pera— + (my>+p?)
X dp, (28)

and this divergence is dealt with by a kind of renormalization of the coupling constant. Owing
to the manifest covariance of Eq. (1), we can choose the rest frame of the bound state and have

87[_87[ S‘“ { 1 4 1 }d
G & Jow Lm4p) 2 (mp+p) 2 P
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_2{E’— (m,—m,)*}'?
— {(matmy) - EFH?

I:{E02+(ma2—mb2)}A . [ | E?+ (m2—my?) | ]

Bit (ma—m) | o LB — (my—mp)? Y P (mat my)— B} 2

B = (m—ms")} |Eo*— (m—m,*) |

| Ed— (m2—m) | Arctan [{Eoz— (m,— mb)z}”z{(ma+mb)2_E02}l/2:|} (29)

Here G is an effective coupling constant.

As a reinterpretation of the coupling constant is made, g24,F/ (8n) in Eqs. (26a) ~ (26d)
is substituted by a constant N for the normalization.
An odd-parity bound-state solution obtained with a renormalization

In the case of g;=0 in Eqs. (17a)~(17d), we have also an odd-parity bound-state solu-
tion:

o My)>—

AL (m,+m m,—m
22 (p)=— 8344 5) H:E mg—n,

16nE2{ (p+dp)*+K?} my+m <m,,+m,,

- [{Ez— (mg—my)*— (::+Z:P+2p)2} maimb—Z(ma—mb)p:] K_ (p):|, (30a)

_ $ASE _
1) =it ol [ [ E=on=m ] - p)

- (mg+my) [P"

83A4PE
16nE?{(p+dp)*+1?}
- I:Ez— (Matmy)*— (m” "P+zp> ] K- (p):l, (30c)
mg+my
g AL (m,+my) E¢
l6nE02{(p+dP)2+K2} [[m,,+m,,

[ 220+ T (e my - B | K () . (304)

P+2p> p] J_(p)

(m" P+2p) ] K_ (p):l (30b)

m,+ ny m,+ my

[(m.,-%m,,) I:P——

—m, (
my+my \m,+m,

xF(p)=— P+2p) ] J-(p)

1 (p) = (m P+2p) (m, m,,)P] J_(p)

mg+my

ot my

The eigenvalue condition is given by integrating both sides of Eq. (30d) over p. Although
a divergence is involved similarly to Eq. (27), this divergence is also dealt with in a similar man-
ner to for Eq. (27). In the rest frame of the bound state, we have

8n_8n (= 1 R 1 _ 2{ (m,+my) 2 — E}'V?
f'_Z—_ . '(mb2+pz)1/2 dp=—

G o (m2+p) "2 {(Ei— (ma—mp) 2}
{E2+ (m2t—m2)} A | E2+ (m2—m,?) |
[Edt (ma—mg) | retan [{EJ— (ma—my) 2] <m.,+mb>2—Eoz}”2]
\ {Eoz_ (maz_mbz)} |E02_ (maz_mbz) |
N e R [{E,,Z— (ma—m,,>2}”2{(m,,+m,,>2—Eol}”2}] (31)

As a reinterpretation of the coupling constant is made, —g:44"/(87) in Egs. (30a)~
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(30d) is substituted by a constant N’ for the normalization.
An even-parity bound-state solution obtained without any renormalization

In the case of g;=g3=0 in Eqs. (17a)~(17d), we have an even-parity bound-state solu-
tion. We state this solution by choosing the rest frame of the bound state from the beginning, as
it is obtained without any renormalization of the coupling constant.

Assuming A$=%=0 in this case of g;=g3=0 in Egs. (17a) ~(17d), we obtain

_glAfzo (m,+m,)

Xf=0 (P) —m {E>— (ma_mb)z}{K+ (P) [p=o} _2(ma’“mb)17{ Js (P) | p=0}1,
(32a)
x> (p)= x=°(p), (32b)
m,+m,
p= _ g Af™°
Bp) == 16nE,(p*+x,?)
X [2(mg—my) p{K, () | p=o} + {(ma+my) > —E+4p*}H{ T, (p) | p=0}], (320)
- . ngf=°
K P =— 167 (p*+Ke?)
% [ 22U ) o} + 2 () — BT ) e} |, (32d)
0
where
Ko*=K?| p=o. (33)

The eigenvalue condition is given by integrating both sides of Eq. (32a) over p. This in-
tegral does not diverge, because J ( p) | p=¢ is reduced to

b

Jo( —o=— (mz2—m;? .
D o= ) G Y e R Y
We have
27ZE02 _ {Eoz_ (ma“mb)z}l/z
Ss+p(mg+my)? {(ma+mb)2_Eoz}1/Z
{E+ (m—my?)} | B+ (m2—my?) |
[ 2 2 2 Arctan[ 2 21172 :|
| E?+ (m, —my?) | {Ey— (ma_mb) } {(ma+mb)2“E02}l/2
B — (m—my®)} | Ey*— (mg*—my*) |
TIEZ (m2 2 Arctan 2 211/2 2 211/2
o — (m2—my?) | {E®— (mg—my)* Y { (ma+my)*—Eg*}
+m,,—m,Jl (ma)
ma+my o my)’ (35)

where

fs+PE§21'=gs=gP (>0). (36)
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The assumption of A=%=0 is satisfied self-consistently in this solution, because ¥5=°(p)
of Eq. (32¢) is an odd function of p.
An odd-parity bound-state solutionn obtained without any renormalization

In the case of g,=g3=01in Egs. (17a) ~(17d), we have also an odd-parity bound-state so-
lution without any renormalization of the coupling constant. We state this solution by choosing
the rest frame of the bound state.

Assuming A{=°=0 in this case of g;=g3=0 in Eqs. (17a)~(17d), we obtain

- g1 A5 (m+my)
I=0(p) =" ;

16nE,(p*+Ko2)
1
X[m,, o (B (=)= 457H 4 (5) | -0k =20 (K- (p) |P=o}], (37)
— & AT (ma+m,) Ey
o) = e s [{Eo— =)} (P) oo} 2 +mbp{K_o:)|P=o}],
(37b)
- _g1A§=0<ma2_mb2)
) = i | 2001 (0) Lo} e () =B (K-(5) -0} |
(37¢)
_ 1A= (m,+my)
2=0(p) =W [zp{ T+ (P) Lol o Lt )~ EFHK - (p) im}].
(37d)

The assumption of A{=°=0 is satisfied self-consistently in this solution, because ¥{=°( p)
of Eq. (37a) is an odd function of p.
The eigenvalue condition is given by integrating both sides of Eq. (37c) over p. We have

2mE¢  {(m,+my)*—E2}"?

fS+P(ma— mb)z— {Eoz_ (m,— mb)Z}xlz

[{Eoz+(mﬁ—mb2)} Arct |: | B2+ (m2—my?) | :l

B+ (mi—m) | oo LBl — (ma— ) Y P (gt my) = EZ Y
{E*— (m2—m?)} | E?— (m2—m,?) |

2 2 2 ArCtan[ 2 211/2 2 2 1/2]]

IEo - (ma — My ) | {Eo - (ma_mb) } {(ma+mb) —Ey }
my+my m,

— In <—— . (38)
mg;—my my

Here fs.p is taken to be fs+p<0 in this solution, differently from fs;p in the solution of Egs.
(32a)~(32d).

It is noted that this solution disappears in the case of m,=my;. This disappearance is due to
the interaction which is taken for the formation of this solution.
3.2 Anexamination of the bound-state solutions about the accuracy of the ladder approxima-

tion

The wave functions of the bound states in the present model allow the probabilistic inter-

pretation. We examine the wave functions of the above four bound-state solutions, in order to
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obtain the information on the accuracy of the ladder approximation.
Calculating

oo

[ more, | weere, | zrere | pwrere 6
in each of the bound-state solutions of Eqs. (26a)~ (26d), Eqs. (30a) ~(30d) and Eqgs. (32a)
~(32d) in the case of m=m,=m*) (after performing the normalization by Eq. (25)), we
show numerical results in Figs. 1~3. These quantities in the bound-state solution of Egs.
(37a) ~ (37d) in the case where m,—mp=10"2m and (m,—my)/ (mz+mp) =103 are shown
in Fig. 4.

Observing Figs. 1~4, we find qualitative features, which include a remarkable one. After
some considerations, we have the following consequences.
(1) The odd-parity bound-state solution obtained with a renormalization in Fig. 2 is notewor-

1.0 : : .
J7_Ix%4ei?dp
n 0 |
o5t
]_aol'x__.(P)l dp

Fig. 1. The probabilities

Ze X532 (p) 12 dp, (2. |x22°(p) 12 dp,

% 1X52°(p) 1> dp and (., [xZ3° (p) > dp

- L:] -x‘.’,’__(p)]zdp 7 in the even-parity bound-state solution of Eqgs.
{ (26a) ~(26d) in the text.

(=]
i I, 12 4p>1%dp

Eg/m

o] L :
2.0 1.5 1.0 0.5 (]

*) We assume that the particles @ and b belong to different kinds.
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1.0 T T : T

|2 xS ppi2dp

v 4

[ 1xg.cp|%ap

o
[.Ixe +piPdp

!

Fig. 2. The probabilities

% X5 () 12dp, 17 12520 (D) 12 dp,

2w 1520 (p) 12dp and |2 1370 (p) IPdp -
- in the odd-parity bound-state solution of Eqs.

(30a) ~(30d) in the text.

[7 |x2-cp¥2dp

Eg/m

20 1.5 1.0 0.5 o

thily strange in comparison with the other solutions. Although the probability of the odd-parity
component x4 +°(p) in this solution is dominative for E, of 2.0=Ey/mz1.1 in accordance
with the natural requirement that the probability of the odd-parity component x+4%(p) in the
odd-parity bound-state solution should be dominative, this probability in this solution does not
satisfy the natural requirement for Ey of 1.1 2 Eo/m=0. This remarkable and undesired feature
must be noticed. It is noted that the natural requirement is satisfied by the odd-parity bound-
state solution in Fig. 4 and the counter natural requirement (that the probability of the even-
parity component x+4°(p) in the even-parity bound-state solution should be dominative) is
satisfied by the even-parity bound-state solutions in Figs. 1 and 3.

(2) The above remarkable and undesired feature of the odd-parity bound-state solution ob-
tained with a renormalization is owing to the inadequacy of the ladder approximation. There
are no other reasons for it in the present model.

(3) As for the other solutions in Figs. 1, 3 and 4, qualitative features of their wave functions
are acceptable.
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§4. Summary and discussion

In this paper, we have made a study to assess the accuracy of the ladder approximation, by
employing a solvable two-body positron-theoretical composite model which is defined in terms
of the Bethe-Salpeter equation in the ladder approximation with various Fermi-type direct in-
stantaneous interactions in 1+1 dimensional world. In this model, we have found two sets of
even- and odd-parity bound-state solutions, one of which is obtained with a }{ind of renormali-
zation of the coupling constant, and the other of which is gotten without any renormalization.
We have examined the wave functions of all the obtained bound-state solutions in detail, as
they allow the probabilistic interpretation. After some considerations, we have obtained conse-
quences, which are summarized as follows: (A) The wave function of the 6dd-parity bound-
state solution obtained with a renormalization contains a remarkable and undesired feature.
The probability of its odd-parity component x++°(p) for the cases of large binding energies
does not satisfy the natural requirement that the probability of the odd-parity component - +°
(p) in the odd-parity bound-state solution should be dominative. This remarkable and un-



178 Taketoshi INO

1.0 T T T

[ pmiZdp
U

0.5
| Fig. 4. The probabilities
10 g2 120 12530 (p) 12 dp, 12 |22 (p) |*dp,
[71%x2 «pi“dp % X820 (p) | dp and [Z., 1223 (p) |2 dp
- N in the odd-parity bound-state solution of Egs.
(37a)~(37d) in the test. It is noted that
| i Ze 12230 (p) I2dp
is very close to
e X5 () P ap
- I_";lxo _pI2dp = for Ey/M of 2.02E,/M= |m,—m,| /M, where
Mis (m,+m,) /2.
Eg/M
0 { |
2.0 1.5 1.0 0.5 Imgy-myl/M

desired feature of the odd-parity bound-state solution obtained with a renormalization is owing
to the inadequacy of the ladder approximation. (B) As for the other solutions, qualitative fea-
tures of their wave functions are acceptable.

We make some discussions about the consequences.
(I) Judging from the present study, we suppose and emphasize that the ladder approximation
(in the real world) may yield not only unsatisfactory quantitative results but also even un-
desired features against the physical requirements concerned with the wave functions, at least in
the cases where the coupling constants of short-range interactions are renormalized. (In our
opinion, the 3+ 1-dimensional generalization of the natural requirement stated above is a physi-
cal requirement)
(II) We suppose that when the ladder approximation is used (in the real world), the wave
functions should be examined in detail at least in the cases where the coupling constants of
short-range interactions are renormalized.
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