ファイル情報(添付) | |
タイトル |
対称空間の代数的モデルとしての準群について
|
タイトル |
On Some Quasigroups of Algebraic Models of Symmetric Spaces
|
タイトル 読み |
タイショウ クウカン ノ ダイスウテキ モデル トシテノ ジュングン ニツイテ
|
著者 |
吉川 通彦
|
収録物名 |
島根大学文理学部紀要. 理学科編
Memoirs of the Faculty of Literature and Science, Shimane University. Natural sciences
|
巻 | 6 |
開始ページ | 9 |
終了ページ | 13 |
収録物識別子 |
ISSN 03709434
|
内容記述 |
その他
In the previous paper [4], we have studied a characterization of linearly connected manifolds with parallel torsion and curvature by their tangent algebras. Lie algebra Lie group correspondence and Lie triple system symmetric space correspondence are found there in the special cases.
On the other hand, as a generalization of Lie group with ( - ) -connection of Cartan, we have a binary-systematic characterization of linearly connected manifold in our minds. From such a view point, we shall try to present in this note a quasigroup, called a symmetric loop, as an algebraic model of symmetric space. In [5], O. Loos has introduced an axiomatic binary system in symmetric space and defined the symmetric space by means of the multiplication. We were motivated by this work to construct the symmetric loop. At the last part of the present note, the family of all left translations of the symmetric loop will be observed on the lines of Lie triple family of transformations of T.Nono [6]. |
言語 |
英語
|
資源タイプ | 紀要論文 |
出版者 |
島根大学文理学部
The Faculty of Literature and Science, Shimane University
|
発行日 | 1973-03-10 |
アクセス権 | オープンアクセス |
関連情報 |
[NCID] AN0010806X
|