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In the previous paper [4], we have studied a characterization of linearly connected
manifolds with parallel torsion and curvature by their tangent algebras. Lie algebra
Lie group correspondence and Lie triple system symmetric space correspondence are
found there in the special cases.

On the other hand, as a generalization of Lie group with (—) -connection of Cartan,
we have a binary-systematic characterization 1) of linearly connected manifold in our
minds. From such a view point, we shall try to present in this note a quasigroup,
called a symmetric loop, as an algebraic model of symmetric space. In [5], O. Loos has
introduced an axiomatic binary system in symmetric space and defined the symmetric
space by means of the multiplication. We were motivated by this work to construct the
symmetric loop.

At the last part of the present note, the family of all left translations of the symme-
tric loop will be observed on the lines of Lie triple family of transformations of T.

Néno [6].

1. Symmetric loops and quasigroups of reflection.

DEFINITION. 2 A loop (G.) is a quasigroup with the identity element e and with the
multiplication denoted by z.y. A loop is said to be power associative (resp. di-associa-
tive) if every element (resp. every couple of elements) generates a subgroup. A power
associative loop G is said to be left di-associative if, for every element a & G, the left
translation fo: £ —> a.z has the property foofo = f» and (fo)! = flaty. A right
di-associative loop is defined similarly. A loop is left and right di-associative if it is

di-associative.

DEerFINITION. A loop (G.) will be called a symmetric loop if it has the following
properties :
(A. 1) G is left di-associative ;
(A. 2) (. )t =zl y™?
(A. 3) z.(y.9).2) = (z. ¥). (z. ). (7L 2)

1) See [2] and [3].
2) See R. H. Bruck [1].
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(A.4) the mapping x —> x. x is a bijection of G onto itself.
ReEMARK. Under the assumption (A. 1), the axioms (A. 2) and (A. 3) can be replaced
by a single axiom ;
(A. 2) z. ((3.3).27) = (. 3). (z. ») (z.2)"L.
ADDED IN PROOF. We found the fact that (A. 2) follows from (A. 1) and (A. 3).
PROPOSITION 1. /f a symmetric loop is a group, then it is an Abelian group.
DEFINITION. A quasigroup (G4) with the following properties will be called a quasi-
group of reflection, whose multiplication will be denoted by x4y :

B. 1) zyx=x
(B. 2) z(xsy) = v
(B. 3) z4(x2) = (2 )x(Tx2).
O. Loos ([5]) has defined a symmetric space as a differentiable manifold with a diffe-
rentiable multiplication satisfying the axioms (B. 1), (B. 2), (B. 3) and
(B. 4) every element 2 has a neighborhood U such that x4y = y implies y = x for
all y in U.
Thus we have
PRrOPOSITION 2. If a quasigroup of reflection, G, is a manifold and if the multiplication
is differentiable, then G is a symmetric space.

In the following few Theorems, we shall show the equivalency between the category
of pointed quasigroups of reflection and the category of symmetric loops.

THEOREM 1. Let (Gy) be a quasigroup of reflection whose multiplication is denoted by
x4y. Let e be an arbitrarily fized element of G and denote ¥ an element defined by the
relation Twe = x for every element x of G. A binary system (G.) defined by x.y =
%y (exy) is a symmetric loop with the identity e.

Proof of Theorem 1. The fact that e is the left and right identity is easily seen by
(B. 1), (B. 2) and

LEmMmA 1. eg=e.

An element eqx which will be denoted hereafter by x7! is an inverse element of x
in the binary system (G.) and the relations 7. (z.y) =y and (z.y)"! = 271, y~! are
valid. These facts are proved by the following two lemmas :

LEMMA 2. (esx) = ey, or equivalently, (x™1) = (%)L
LEMMA 3. iy3x = e.

Using the above results we can show that;
LEMMA 4. 7.k = x.

This lemma implies that the mapping £ —> x. z is a permutation of G. It is also

seen that the quasigroup (G.) is left di-associative. Finally, the formula (A. 3) is proved
by using the following relations ;

z. (y32) = (. y)x(x. 2),
(zgy) ™ = 27y
and
LEMMA 5. z4(yxx) = (253)x2.
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The followings are also proved easily :

LEMMA 6. £31 ! = x.
LEMMA 7. (£)xx = Zg.

ProrositTioN 3. Let (Gx) be a quasigroup of reflection. If (G.) and (Go) are the
symmetric loops associated with different base points (identity elements) e and e’ respectively,
as are given in Theorem 1. Then the mapping of G onto itself defined by the left
translation by €' in (G.)is an isomorphism of (G.) onto (Go), i. e. the following relation
holds :

(€. z)o(e. y) = €. (x. ).

Proof. For every element x, denote £ and % the elements defined by the relations
fxe = x and Zye¢’ = x respectively. By the definitions of the multiplications in (G.) and
(Go), each hand side of the tormula in the Proposition is represented by means of the
«-multiplication, respectively, as follows ;

(€. z)o(e". v) == & xlexm)nle (@ xlex )],
e (x. y)= [c’*(;’*f)]*[e’*(?*(e*y)].

Thus, to prove the Proposition, it is sufficient to show that

—~—

(e’*(f?*f) = ?*(C’*x)~
Using Lemma 5, we see that this is equivalent to the relation

(3'*73)*? = ¢ *T5
which is always valid (Lemma 7).

Q. E. D.
THEOREM 2. Let (G.) be a symmetric loop with the identity e. A binary system (Gy)

defined by x4y = (x. x).y7! is a quasigroup of reflection and the associated symmetric
loop with the identity e coincides with the original symmetric loop (G.).

Proof. 1t is easily seen that (Gy) is a quasigroup. The axiom (A. 1) implies (B. 1).
Also (B. 2) follows from (A. 1) and (A. 2). Finally, (B. 3) is proved by the following

LEMMmA 8. z. (v42) = (. y)x(x. 2),
()™ = 27y
This Lemma can be proved by using (A. 3).
The second part of the theorem is easily seen by calculating the product of x and 3.
Q. E. D.

THEOREM 3. Let (Gy) be a quasigroup of reflection and let (G.) be a symmetric loop
associated with the identity element e © G. The quasigroup of reflection obtained from
the symmetric loop (G.) by means of Theorem 2 coincides with the original quasigroup of
reflection (Gy).

Proof. For any two elements x, y & G, their product in the new quasigroup of

reflection is represented by means of the original y-product as follows :

z.x.y = (5*6)*(6*(9*3’))-

It is easily seen that the right hand side of this formula is equal to x4y.
Q. E. D.
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As we have already remarked, O. Loos [5] characterizes a symmetric space as a
differentiable manifold with a germ of local quasigroups of reflection. From the above
Theorems we recognize that a symmetric space can be characterized also as a differen-
tiable manifold with a germ of local symmetric loops. 3) However, this note is
concerned only with purely algebraic aspects of symmetric spaces.

2. Triple family of transformations of symmetric loops.

DEFINITION, Let G be a set. A family & (G) = {fz}xer of mappings of G onto itself
is called a triple famly of transformations 4) of G if it satisfies the following axioms :
(C. 1) every f»& & is a bijection of G onto itself;
(C. 2) there exists a mapping a : IXI —> I such that frofyofs = faxy »
for z, yEG;
(C. 3) there exists a mapping 5 : I—> I such that f2™! = fa),
for x =G
(C. 4) the identity mapping Ids of G belongs to 2

REMARK. The concept of triple family of transformations have been introduced by
T. Néno in [6], where the set G is a differentiable manifold, T is a family of diffeo-
morphisms and the set of indices I is an open neighborhood of 0 in r-dimensional
real numerical space R”. T. Néno has shown that a system T of infinitesimal transfor-
mations on a manifold G generates a triple family of local transformations of G if and
only if T is a Lie triple system, which is known 5) as a tangent algebra of a symmetric
space,

Now we shall present a Theorem which may be expected in the above remark.

THEOREM 4. Let (G.) be a symmetric loop. A family & = {fa}x=c of all left iransla-
tions of G s a triple family of transformations of G.

Proof. For any elements x, ¥ and z in G, the element f.of,of.(z) is represented as
follows, by using the axioms (A. 1), (A. 2)and (A. 3).

Srofyofu(z) = 2. (v. (x. 2))
= (z.3). (z. 3). ({7t 277!
= (z.3). (.3). 2,

where y.y == y. Hence we have

(C. 2) feofyofo= fatxm >
where a(z,y) = (z.y).(z.y) for any z, y EG.
The remaining axioms are clearly satisfied .since (G.) is a left di-associative quasi-
group. Q. E. D.
Department of Mathematics
Shimane University

3) In [2], we have considered certain local loops in linearly connected manifolds. In the
application of the above loop theory to [2], it should be remarked that the order of the
product is interchanged. Therefore, for instance, the word ‘left di-assoicative’ of Theorem 2
in [2] should be read ‘right di-associative’ in the present sense.

4) T. N no [6].

5) See, for instance, [4] or [5].
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