種数3のコンパクトリーマン面上の正則θ-直線束

島根大学文理学部紀要. 理学科編 Volume 9 Page 13-18 published_at 1975-12-20
アクセス数 : 931
ダウンロード数 : 48

今月のアクセス数 : 68
今月のダウンロード数 : 5
File
c0030009r003.pdf 681 KB エンバーゴ : 2002-01-25
Title
種数3のコンパクトリーマン面上の正則θ-直線束
Title
Holomorphic θ-Line Bundles over a Compact Riemann Surface of Genus(3)
Title Transcription
シュスウ 3 ノ コンパクト リーマン メンジョウ ノ セイソク θ チョクセン ソク
Creator
Matsunaga Hiromichi
Source Title
島根大学文理学部紀要. 理学科編
Memoirs of the Faculty of Literature and Science, Shimane University. Natural sciences
Volume 9
Start Page 13
End Page 18
Journal Identifire
ISSN 03709434
Descriptions
This paper is a continuation of the author's precediug note [5]. We want to study mainly about the group of equivalence classes of holomorphic Z_2-line bundles over a compact Riemann surface of genus three. To assure that an involution is holomorphic and to see explicitly an aspect of a ramification, we treat plane algebraic curves without singularity. §1 contains reformulations of some known results in convenient forms, and these are used explicitly or implicitly in §2 and Remark. Especially, a fundamental result due to A. Hurwitz is effectively used to see topological structures of surfaces. The exact sequence (3) in §2 is one of our main results. In Remark an example is given, and it is proved that there exists no holomorphic G-line bundle other than trivial bundle.
Language
eng
Resource Type departmental bulletin paper
Publisher
島根大学文理学部
The Faculty of Literature and Science, Shimane University
Date of Issued 1975-12-20
Access Rights open access
Relation
[NCID] AN0010806X