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This paper is a continuation of the author’s preceding note [5]. We want to study mainly
about the group of equivalence classes of holomorphic Z,-line bundles over a compact Riemann
surface of genus three. To assure that an involution is holomorphic and to see explicitly an aspect
of a ramification, we treat plane algebraic curves without singularity. §1 contains reformula-
tions of some known results in convenient forms, and these are used explicitly or implicitly in § 2 and
Remark. Especially, a fundamental result due to A. Hurwitz is effectively used to see topological
structures of surfaces. The exact sequence (3) in § 2 is one of our main results. In Remark,
an example is given, and it is proved that there exists no holomorphic G-line bundle other than
trivial bundle.

§1. Some generalities

This section describes some results which we use in the next section. These results
are reformulations of known results. C denotes the field of complex numbers. Sup-
pose V=C3 is an irreducible analytic variety which admits a good C*=C— {0} action
leaving V invariant, i.e.

G(ta (ZO, 21 ZZ))=(I‘10203 tq1zl9 tqzzz)’ (1'2’ [6])'

Let @: C3—C3 be defined by ¢(z¢, 24, z,)=(z¥°, 2§, z§2) and V'=¢~1(V) which is
called the cone over V following P. Orlik and Wagreich. The quotient space X’ of
V’'—{0} by C* is an analytic space, and the analogue is true for V, where we denote by
X the quotient space of V—{0}. The holomorphic map ¢ induces the quotient map @:
X’'—>X. It can be easily seen that C* acts separably on V'—{0} and V—{0}, (De-
finition 15, [2]). By Zusatz to Satz 12 in [2],

ProrosiTION 1. The map @ is holomorphic.

The sheaf of germs of holomorphic functions or holomorphic differential forms
of type (1, 0) on a compact Riemann surface M are denoted by O or O!-© respectively.
We denotes by I'(M, 01-°) the set of all sections of the sheaf 0!:9, i.e. the space of
abelian differentials on the surface M. The exact sequence

(1) 0—C—0-401°—0

leads to the exact sequence
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) 0—sI'(M, 0-9 2, HY (M, C)— H (M, 0)—>0.
By the fundamental result of Hodge theory and Theorem 10.2, [8], we have

PROPOSITION 2. HY(M, C)=déI'(M, 01:°)+56I'(M, 0%-9),
where the bar over the second term on the right denotes the complex conjugate. This
proposition supplies an information about the dimension of the invariant subspace
of the Picard variety. In fact, let H be a group of automorphisms of the space M
and I'(M, 01-%)H be the H-invariant subspace, then it is isomorphic to the space I'(M/[H,
01:9), and so its dimension is equal to the genus of the quotient space M/H, ((b), Theo-
rem 3, [4]).

The next proposition can be used as a criterion for the hyperellipticity of a compact
Riemann surface M. We can find such an example at 10-10 in [8].

ProPOSITION 3, (Theorem 6-11, [8]). If p,(z)dz and p,(z)dz are two meromor-
phic differentials on a compact Riemann surface M, then the fraction p,(z)[p,(z)
defines a meromorphic function on M. '

Let M be a compact Riemann surface with a group of order n of effective auto-
morphisms. Denote by {a,..., a,} the set of branch points of the natural projection
p: M—M/|G. Suppose the genus of the quotient space M/G is §. We choose an
arbitrary point O on the surface M/G and 2§ closed paths 4, By,..., A;, B; with base
point O, by which the surface M/G is developed in a simply connected surface with
boundary, say (M/G)'. Then we draw simple paths [,,..., I, from the point O to the
points a,,..., a, in the interior of (M/G)" which do not intersect each other. Denote
by (M/G)" the arising surface. Here we collect a result due to A. Hurwitz (6. II
Abschnitt, [3]). Let {S;,..., S,} be the elements of G. Further, let T,,..., T}, Uy,
Viseoo, Uy, V5 be any k+2§ elements of G, by which G is generated and the relation

T,...TU VUVt UVUz 'Vt =
is satisfied. Denote by the same letters S,..., S, n copies of (M/G)".

ProPOSITION 4. The surface M is obtained by a connection of these surfaces
along the cuts 1, A, B with suitably choiced T, U, V, that is as a scheme

ll,..., lk, Ay, Bl""’ Aﬁ’ Bﬂ
M= ’
Tyseeir T U, Viseo, Up V5

§2. Holomorphic G-vector bundiles

Following the notations in §1 and Z to denote the group of integers, the group
of complex line bundles of Chern class zero is isomorphic to
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H' (M, C)

Po(M)= HY (M, Z)+0oI' (M, 01 0)

As in [5], the exact sequence due to Grothendieck is - _
1 e— H(G, HY(M, 0%)— H'(M, G, 0%)— H'(M, 0*)S,

where O* denotes the sheaf of germs of nowhere vanishing holomorphic functions on
M. Suppose the natural projection p: M—M/G is an n-sheeted covering with branch
points a,,..., a,, where the ramification order at a; is m;—1 for i=1,..., k, that is, the
map p can be described locally as w=z™: near the point a; for eachi=1 .» k. Then
the Riemann-Hurwitz formula is

—~
S
~
l\)‘

z";l( =D 4n(G—1+1.

Let V' be a surface in C3 with the only singularity (0, 0, 0), then by the C*-action
the quotient space is a plane algebraic curve. In this section we treat such a plane
algebraic curve of genus three with an involution. Good examples are presented by
the three classes of the first half in the six classes by Orlik-Wagreich (Definition 3.1.1,
[6]). We denote by [z, z;, z,] the homogeneous coordinate in the complex projec-
tive plane CP2.

Class I. The equation of V' is given by z§+z${+2z4=0, and the map 8: [z,,
24, 2,020, 21, —2,] defines an involution of the quotient space X" in §1. The set
of fixed points is [1, &}, 01, j=1, 2, 3, 4, where ¢,=expni/4. The quotient space by
the involution is a compact Riemann surface of genus one by (2). We have X ={{z,,
24, Z5); 28+ 24 +23=0}, where {tz,, tzy, t?z,}={z,, 2, z,} for each teC*. Here
we remark that the Riemann surface X’ is not hyperelliptic. For the space X' is the
surface of the algebraic function field which is given by the equation f4=—(1+2z%),
then we can discuss analogously as in 10-10 in [8] by using Proposition 3 in §1.
Since the covering ¢: X'—X is two sheeted with four branch points, then the scheme

in Proposition 4 in §1 is
! 11’ lZa 139 l47 As B
X'= s
TLTTTILI

where T is the transposition and I is the identity map. Therefore the map ¢ can be
described topologically as in the figure in p. 16.

The involution 0 induces the transformation of the one dimensional homology basis,
A,—~—A;, Bj—>—B;, A,—~—A4,, B,—~—B,. Letay, by, a,, b,, as, b; be the Poincaré
duals of the homology classes 4,, By, 4,, B,, A3, B3 respectively, then for arbitrary
complex numbers X;, Y1, Xz, Y2, X3, Y3, O0(x1a; + Y1+ X205+ y2by+x3a5+ y3b3)
= —x,a3—y;b3—x,a,—y,b,—x3a;—y3b;. Thus the cohomology class is f-invariant
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if and only if the class (x;+x3)a;+(¥;+y3)byi+2x,a,+2y,b,+(x3+X1)as+(ys
+y1)bs belongs to modulus HY(X', Z)+6I'(X’, 01-°), that is x;+X3, ¥;+ V3, 2X5,
2y,, are integers modulo 6I'(X’, 0'-°). Since the group 6I'(M, O'°) is generated by
classes a,+ y; 101+ Vi2b2+ Wi.3b3, k=1, 2, 3 for some y, ;€ C, j=1, 2, 3, then by the
exact sequence (1), we have an exact sequence

_C_

©) e Zy—— H(X', 25309 —( 5o

® zz) x Z.
Now we advance to the another two classes. As far as we concern holomorphic
0-line bundles, the aspect is quite similar to the class I.

Class II. The equation of V”’ is given by z§+z$+z,z3 =0, and the map 6: [z, z,
z,]1-[—2z¢, 21, z,] defines an involution of the quotient space X'. The set of fixed
points is [0, 1, ¢4], j=1, 2, 3, and [0, 0, 1], where ¢;=exp=i/3. The quotient space
X is of genus one and can be described as

X={{z¢, 21, 2,}; 2+ 2z} +2,23 =0}, where {t?z,, tz{, tz,}
={z,, 2, 2,3 foreach teC*.

Class III. The equation of V' is given by z¢+2z3z,+23z,=0, and the map 6:
[zo, Z1» Z21—[— 20, Z1, Z,] defines an involution of the quotient space X’. The set
of fixed pointsis {[0, 1, + /=11, [0, 0, 1], [0, 1, 0]. The quotient space X is of
genus one and can be described as

X={{zo, 21, 22}; 2§+ 23z, + 232, =0}, where {1*z,, 1z,, 125}
={zo, 2;, z,} foreach teC*.

Next we consider again the class I. Define a Z, x Z,-action on X' by 0,: [z,
Z1, Z,1—[20s 21, —2,] Which is the involution 8 and 6,: [z, z;, 2,120, —21, Z2].
The action is without fixed point, but admits eight branch points [1, &}, 0], [1,0, &1,
j=1, 2, 3, 4, where g,=expni/4. The involution 0, induces the transformation of
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one dimensional homology basis, 4;—~—A4,, By—»—B,, A3— — A3, B3—>—B;. Then
for a cohomology class,

0,(x1a;+y1by+X3a,+ y,b,+ X305+ y3b3)= —x1a,—y by —X,a, — y, by
—X3a3—y3bs.

Thus the cohomology class is 0,-invariant if and only if the class (x;+x,)a, +(y,
+y)by + (x5, +x)ar+(y,+y)by+2x3a5+2y3b; belongs to the modulus H!(X',
Z)+6I(X’, 01:9), that is x; +x,, y;+ Y2, 2x3, 2y are integers modulo 6I'(X’, 01:9).
Hence the class x,a, +y,b; +x,a, +y,b, +x3a3+y3b; is Z, x Z,-invariant if and only
if 2x,, 2y,, 2x3, 2y3, (X1 +X,), (y1+y,) are integers modulo 6I'(X’, 0!:°). The se-
quence (1) is

e—>HYZ,®Z,, HO(X', 0%)— HY(X', Z,®Z,; 0¥)— H(X', 0%)22822,

By the proof of Proposition 2 in [5], H{(Z,®Z,, HY(X', 0*)=Z,®Z,. Hence
the order of the group HY(X', Z,®Z,; 0%) is equal to 4x2x2x2x2=64 for each
degree. The quotient space is a compact Riemann surface of genus zero and so the
projective line which is given by the equation z§+z2+2z2%=0 with the identification
{tzq, 1?2z, t?z,} ={z0, z,, z,} for each t e C*.

REMARK.

I. Let S be Klein’s compact Riemann surface of genus three admitting a simple
group I'y4s of 168 automorphisms, which is generated by U, V, T and U2=V3=T"
=1, the unit, [7]. For the canonical form of the surface given in 3, [7], we can put
A,=A4,B;=B, A,=C, B,=D, A;=E, By=F. We want to see the structure of the
group H(S, 0%)%, where G=I";45. By the formula (1), [7], a cohomology class x,a,
+y1by+x5a, +y,by+x3a3+ y3by is T-invariant if and only if

1) X1 —Vit+ y2—y3=0,
2) X2 — Y2+y3=0,
3) Xy +2x%3 =0,
4) X1+ X+ X3 =0,
5) X1 +X; = y1+2y,—-y;=0,
6) —y1+ y2+y3=0,

where = denotes the congruence modulo the group H(S,Z)+4I'(S, 01:°). Then
we have

7) xlE4y2, 8) X2=—Ya, 9) X3E—3y2,
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10) 7y,=0, 11) y3;=2y,, 12) y(=3y,:

By the formula (2), [7], the class is V-invariant if and only if

1) 2x1+ X3+ x3—y; =0,
2') Xy —X3 +y,—y3=0,
3') —Xz+X;3 —y2+y3=0,
4') X1 + V1 =0,
5%) Xq +y,—y3=0,
6") Xy +Xx, =0,

then we have 13) x;=—2x,. By 7), 9), 13), —3y,=—8y,, then 5y,=0 and so by
10) 2y, =0, hence y, =0, thus the class is zero. Therefore we have

PROPOSITION 5. HA(S, 0%)6=Z, where G=Ty43.

By the analogue to the proof of Proposition 2 in [5], we can prove that the group
HY(G, H°(S, 0%))S contains at least 2 x 3 x 7=42 elements.

IT. Here we want to find a plane algebraic curve which realizes the situation in
[5]. Ttis known that any compact Riemann surface of genus two cannot be expressible
as a plane algebraic curve without singularity. The plane curve X': z§+z$+2z{z3=0
has an isolated double point [0, 0, 1]. The involution [z,, 2, z,1=[20, 21, — 23]
admits the set of fixed points [1, &, 0], j=1, 2,..., 6, where 86='€/i—1 and [0,0,1].
The quotient space of X' is X={{z¢, 2y, z,}; 2§ +2$+2%z,=0 and {tz,, tz,, 1?2,}
={z,, z;, Z,} for each te C*}. By the resolution of the point [0, 0, 1], we get a
hyperelliptic surface of genus two and the projective plane as its quotient space.

References

[1]1 A.GROTHENDIECK, Sur le memoire de Weil [4], Généralisation des fonctions Abéliennes,
Semi. Bourbaki, 141 (1956) 01-15.

[2] H. HoLMmanN, Quotienten komplexer Rdume, Math. Ann. 142 (1961) 407-440.

[3] A.Hurwitz, Ueber algebraische Gebilde mit Eindeutigen Transformationen in sich, Math.
Ann. 41 (1893) 403-442.

[4] J. Lewirtes, Automorphisms of compact Riemann Surfaces, Amer. J. Math. 85 (1963)
734-752.

[5] H. MATSUNAGA, Holomorphic 6-Line Bundles over a Compact Riemann Surface of
Genus 2, Mem. Fac. Lt. & Sci. Shimane Univ. Nat. Sci. 8 (1975) 17-20.

[6] P.OrLik and P. WaGRrEIcH, Isolated singularities of algebraic surfaces with C* action,
Ann. of Math. 93 (1971) 205-228.

[7]1 H.E.RaucH and J. Lewittes, The Riemann Surface of Klein with 168 Automorphisms,
Problems in Analysis, Princeton, 1970.

[8] G.SpriNGER, Introduction to RIEMANN SURFACES, Addison Wesley, 1957.



