等質系について(I)

アクセス数 : 1043
ダウンロード数 : 68

今月のアクセス数 : 111
今月のダウンロード数 : 1
ファイル情報(添付)
c0030011r002.pdf 1.46 MB エンバーゴ : 2002-01-24
タイトル
等質系について(I)
タイトル
On Homogeneous Systems(I)
タイトル 読み
トウシツケイ ニツイテ 1
著者
吉川 通彦
収録物名
島根大学文理学部紀要. 理学科編
Memoirs of the Faculty of Literature and Science, Shimane University. Natural sciences
11
開始ページ 9
終了ページ 17
収録物識別子
ISSN 03709434
内容記述
その他
In this paper, homogeneous systems which have been introduced in [4] will be considered on differentiable manifolds. It is intended to show that the various results in [2], [3] for a homogeneous Lie loop G are essentially those results for the homogeneous system of G. Let (G, η) be a differentiable homogeneous system on a connected differentiable manifold G. The canonical connection and the tangent Lie triple algebra of (G, η) are defined in §§1, 2 in the same way as in the case of homogeneous Lie loops [2]. At any point e, G can be expressed as a reductive homogeneous space A/K with the canonical connection and with the decomposition 〓 = 〓 + 〓 of the Lie algebra of A , where 〓 is the tangent L. t. a. of (G, η) at e. In §3 we shall treat of the regular homogeneous system, a geodesic homogeneous system G in which the linear representation of K on 〓 coincides with the holonomy group at e. The following fact will be shown in §4 ; if (G, η) is a regular homogeneous system, then there exists a 1-1 correspondence between the set of invariant subsystem of G and the set of invariant subalgebras of its tangent L. t. a. (Theorem 5).
言語
英語
資源タイプ 紀要論文
出版者
島根大学文理学部
The Faculty of Literature and Science, Shimane University
発行日 1977-12-20
アクセス権 オープンアクセス
関連情報
[NCID] AN0010806X