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In this paper, homogeneous systems which have been introduced in [4] will be considered on
differentiable manifolds. It is intended to show that the various results in [2], [3] for a homogene-
ous.Lie loop G are essentially those results for the homogeneous system of G. Let (G, %) be a
differentiable homogeneous system on a connected differentiable manifold G. The canonical
connection and the tangent Lie triple algebra of (G, %) are defined in §§1, 2 in the same way as
in the case of homogeneous Lie loops [2]. At any point e, G can be expressed as a reductive ho-
mogeneous space 4/K with the canonical connection and with the decomposition A =@ + & of the
Lie algebra of 4, where & is the tangent L. t. a. of (G, %) ate. In §3 we shall treat of the regular
homogeneous system, a geodesic homogeneous system G in which the linear representation of K
on & coincides with the holonomy group at e. The following fact will be shown in §4; if (G, %)
is a regular homogeneous system, then there exists a 1-1 correspondence between the set of
invariant subsystem of G and the set of invariant subalgebras of its tangent L. t. a. (Theorem 5).

§1. Canonical Connection of Homogeneous Systems

Let n be a differentiable homogeneous system on a connected (C®-class) differ-
entiable manifold G of dimension n; that is, a differentiable map #: GXx Gx G—»G
satisfying (1) n(x, x, y)=n(x, y, x)=y, (2) nx, y, n(y, x, z))=z and (3) n(x, y, n(u,
v, w)=nH(x, y, u), n(x, y, v), n(x, y, w)) for any x, y, z, u, v, we G (cf. [4]). Each
displacement 3(x, y): G—G of n defined by z—#(x, y, z), z€G, is a diffeomorphism
of G. Throughout this paper the manifold G is always assumed to be connected and
second countable.

Now we introduce a linear connection on G associated with 5 as follows: Let
n: P(G)—G be the bundle of linear frames on G. For each frame u € P(G) at a=n(u)
€G, let 3, be a global cross section of P(G) through u which is given by ¥ ,.(x)=#4(a,
xX)u for x € G, where 7,(a, x) denotes the map of linear frames induced from the diffeo-
morphism #(a, x). For any g € GL(n, R) acting on P(G) on the right we have (3 ,(x))g
= .4(x). Hence the n-dimensional distribution Q which assigns to each ue P(G)
the tangent space Q, to.the section X, at w is right invariant and so the infinitesimal
connection of P(G) with Q as its horizontal subspaces is defined and it induces a linear
connection V on G, which will be called the canonical connection of #.

ExampLE. Let G be a connected homogeneous Lie loop under the binary
operation xy=pu(x, y) (cf. [2]), that is, u is a differentiable loop on the manifold G
whose left translations L,: y—xy satisfy the conditions; (1) for each x € G there exists
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an inverse x~! of x such that (L,)"*=L,-, and (2) every left inner mapping L,,: =
L;IL.L, is an automorphism of u. If we set n(x, y, z): =u(x, p(x~'y, x7'z)) for
X, Y, zeG we see that n is a homogeneous system on G. In this case the canonical
connection of u introduced in [2] is nothing but the canonical connection of # defined
above. In particular, if u is a Lie group then the connection is the (—)-connection of

E. Cartan.

For a fixed ee G, we have seen in [4] that the homogeneous system # defines a
binary operation u(®)(x, y): =#(e, x, y) whose left translations have the same proper-
ties as those of homogeneous loops; that is, e is the identity of u(¢) and the conditions
(1) and (2) in the example above are satisfied for x~'=#(x, ¢, ¢). Moreover, the
equality 5(x, y, z)=p(x, p(x~1y, x1z)) holds and, since u is differentiable in
the present case, p(®) is a homogeneous Lie loop if and only if all of the right transla-
tions of u(® are diffeomorphisms. of G (cf. Theorem 2 of [4]). Thus we see that the
concept of differentiable homogeneous systems on manifolds is a slight generalization
of that of homogeneous Lie loops, under the base point (identity element) free version.
In fact we have;

"PROPOSITION 1. " For each point ee G, the multiplication p® forms a local
homogeneous-Lie loop around e.-

Proor. We are only to show the fact that every right translation of u() restricted
to a neighbourhood of e is a local diffeomorphism. This follows directly from the
differentiability of u(©) and the equality u(®)(x, e)=x. g.e.d.

Let Aut () denote the group of all differentiable automorphisms of . It contains
the group D(3) of displacements of . For a point ee G fixed, denote by 4, the left
inner mapping group of ), which is the same as the isotropy subgroup of the
group D(n) at e (see [2, §1] and [4, §3]). :

The sections {3 ,; ue P(G)} of the frame bundle P(G) considered above are
invariant under any automorphism of #. Hence we have

PrOPOSITION 2. The automor phism group Aut(n) of a homogeneous s ystem
nonGisa closed subgmup of the affine transformation group of the canonical connec-
tion ¥ of .

"~ CorOLLARY. The group of displacements of n and the left inner mapping group
A, of n at e are subgroups of the affine transformation group of V.

In the analogous way to the case of homogeneous Lie loops [2, 3], we can show
that the homogeneous system (G, 1) with a base point e is identified in a natural manner
to a reductive homogeneous space with the canonical connection of the second kind.
An outline of the construction is as follows: - Let K, be the closure of the left inner:
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mapping group A, in the isotropy subgroup of the Lie transformation group Aut (1)
ate. Then K, is a Lie group and the product manifold A=G x K, is again a Lie group
under the group multiplication (x, &)(y, B): =@ (x, (), Ly e p), for (x, ),
(y, p)e A. The closed subgroup K: ={e} x K, of A4 is isomorphic to K, under the
natural projection. As the tangent space at the identity ex1s, the Lie algebra 2A
of A is decomposed into the direct sum =6+ K of the tangent space ®=T,(G) to
G at e and the Lie algebra & of the Lie group K,. Since the submanifold G x 15 of 4
is invariant under the inner automorphisms by elements of K, we have Ad(K)®6<®
and we see that 4/K is a reductive homogeneous space. - In this case 4 acts effectively
on A/K. The map f: A/K—G defined by f(xxK,)=x, x€G, is a diffcomorphism
which induces an affine isomorphism of the canonical connection of' 4/K to the canoni-
cal connection of # on G. We summarize these facts as follows; (cf. [5])

THEOREM 1. Let G be a connected differentiable manifold admitting a homo-.
geneous system 1, A, be its left inner mapping group at a base point e. -Then, w.r.t.-
the point e, G can be expressed as a reductive homogeneous space A|K such that the
canonical connection of y is expressed as the canonical connection of A/K where A
=GxK,, K,=1, and the subgroup K of A is isomorphic to K.. :

§2. Tangent Lie Triple Algebras

Let G=A/K be the reductive homogeneous space at e€ G of the homogeneous
system 7 on G, with the canonical decomposition of the Lie algebra 2 of 4; A=6+K,
Ad(K)® < ®. Since A acts effectively on G, K, can be identified: with its linear repre-:
sentation on ®, the latter is identified with the adjoint representation of K restricted
on the subspace ® of the Lie algebra A. (cf. [6], [7], [8]).

Let S and R denote the torsion and curvature tensors of the canonical connection
7 of # respectively, opposite in their signs to the usually defined ones. Since F is
identified with the canonical connection of A/K, we see that /'S=0 and FR=0, and
they are evaluated at e as follows; S(X, Y)=[X, Y] R (X YZ=[[X, Y1q Z]
for X, Y, Ze ®, where [ 1y (resp. [ 1) is the G-component (resp. S-component) of
the bracket in the Lie algebra =6+ K. Furthermore, applying the results on reduc-
tive homogeneous space ([8]) to our case, we get the following propositions. - R

PROPOSITION 3. The restricted holonomy group ®% of the canonical connec-
tion (with reference point e) is a normal subgroup of the linear representatzon of
K,=4, on 6=T,(G).

PROPOSITION 4. For each Xe®, the 1-parameter subgroup expitX= (x(t),
a(f) of A=Gx K, generated by X acts as parallel dlsplacement along the geodesic
x() from e=x(0). o . o
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A homogeneous system 5 on G will be said to be geodesic if, for any two points
X, y on any geodesic arc ¢ (w.r.t. ), the displacement #(x, y) induces the parallel
displacement of tangent vectors from x to y along ¢. By using Proposition 4 we can
show that the following proposition whose proof will be omitted (cf. [5]).

ProrosiTION 5. A homogeneous system (G, n) is geodesic if and only if the Lie
group A=Gx K, has the following property: For each X € ® the 1-parameter sub-
group exp tX is contained in the submanifold G x 14 of A.

ReMark. In [2] we have introduced the concept of geodesic homogeneous Lie
loops. The proposition above shows that a homogeneous Lie loop is geodesic if and
only if its homogeneous system given in the example in § 1 is geodesic.

In the same way as in the case of geodesic homogeneous Lie loops, we introduce
the concept of tangent Lie triple algebras of geodesic homogeneous systems. On the
tangent space G,=T,(G) to a homogeneous system (G, #) at e, we define a bilinear
operation XY and a trilinear operation [X, Y, Z], X, Y, Ze®, as XY: =S,(X, Y)
and [X, Y, Z]: =R(X, Y)Z. The tangent space G, equipped with these operations
will be called the tangent Lie triple algebra of (G, #) at e.

ProrosITION 6. The tangent L.t.a. at any point e of (G, ) is a general Lie
triple system. _

The tangent L.t.a. ®, at e of the geodesic homogeneous system (G, #) is related
to the multiplication (€ in the following manner: Consider the product (x, 15)(p,
1g)=(u®)(x, ), L,,,) of any elements of Gx 15 in the Lie group A=GxK,. For
any X, Ye®,, if x=exptX and y=expsY then the G-component pu)(x, y) and the
K -component L, , induce the infinitesimal operators p1,(¢) and A, such that u, (X, Y)
=[X*, Y*], for the vector fields X*(z)=1(e, 2)X, Y*(2)=#n4(e, 2)Y, ze G, and that
A4 & x G—K is a bilinear map induced from A(x, y)=L, , by taking account of the
properties L, =L, ,=15. Then we have; (cf. [5]) '

ProposITION 7. The bilinear and trilinear operations XY and [X, Y, Z]
of the tangent L.t.a. of a geodesic homogeneous system (G, 1) at e is expressed,
respectively, as XY=p, (X, Y) and [X, Y, Z]1=ad (A(X, Y)—A.(Y, X))Z for X,
Y, Ze6.,.

Since every displacement of # is an automorphism of #, it induces an isomorphism
of the multiplications u(®) and u(? at any e and ¢’. Therefore, the tangent L.t.a.’s
of a geodesic homogeneous system are isomorphic with each other.

,§'3.. Régular Hdinogeiieo_ué -S')"s.tem_sr _

Let (G, ) be a geodesic homogeneous system and &=, its tangent Lie triple
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algebra at e. An inner derivation D(X, Y) of ® for X, Ye ® is an endomorphism of
® given by D(X, Y)Z=[X, Y, Z] for Ze ®. We denote by D(®) the inner derivation
algebra of ® which is by definition a Lie subalgebra of End (®) generated by all inner
derivations of . D(®) is an ideal of the Lie algebra ad &|g=R. With respect to the
canonical connection V, D(X, Y)=R (X, Y). Since FR=0, D(®) is equal to the
Lie algebra of the holonomy group of  at e.

Suppose that G is a Lie group and (G, #) is the homogeneous system on G induced
by the group multiplication of G. Then the left inner mapping group 4, at the identity
e is the trivial group consisting of 1;. Hence A=G x 15 and K=D(®)={0}. In this
case the tangent L.t.a. ® is reduced to the Lie algebra of G with the bracket [X, Y]
=XY and [X, Y, Z]=0 for any X, Y,Ze®. F is an invariant connection on G
such that /S=0 and R=0, that is the (—)-connection.

A geodesic homogeneous system (G, #) will be said to be regular if, at some point
e, the linear representation dK, of the Lie group K, on the tangent L.t.a. ® at e coin-
cides with the holonomy group @, of V/ at e. It is easy to see that the definition for
(G, n) to be regular does not depend on the choice of the base point.

PROPOSITION 8. A geodesic homogeneous system (G, n) is regular if and only
if K=D(6).

Proor. 1If (G, n) is regular then it is clear that & =D(®) since the Lie groups
dK,=Ad(K) and &, coincides with each other. Conversely, if &=D(®) then dK,
is equal to the restricted holonomy group ®9. Let ¢ be any closed piecewise differ-
entiable curve in G with the base point e. There exists a piecewise geodesic closed curve
¢’ homotopic to ¢ with the fixed end point e. Since (G, #) is supposed to be geodesic,
the parallel displacement along ¢’ is expressed as a composition of the differentials of
displacements which must belong to the linear representation of A,. From t;lt,e

®9=dK, we see that 7, belongs to dK,, where 7, denotes the parallel displacement along
the curve c. g.e.d.

As we have seen above the homogeneous system of any connected Lie group is
regular with D(®)=0. Conversely we have;

THEOREM 2. If a geodesic homogeneous system (G, n) is regular with D(®)=0,
then the multiplication u(®)(x, y)=n(e, x, y) defines a Lie group on G whose homo-
geneous system is (G, n).

Proor. Since the maps (x, y)—p©(x, y) and x—>x"l=y(x, e, €) are differ-
entiable, it is sufficient to show that u(®) is an abstract group. From the assumption
it follows that dA,cdK,= ®9={1g}. Since the linear representation of K, is faith-
ful, we get 13=L,, for x, y € G which shows that u(® is a group (cf. [4]). g.e.d.

THEOREM 3. A geodesic homogeneous system (G, n) is regular if the exponential
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map Exp,: ®—G of the canonical connection V is surjective at some point e€G.

Proor. If Exp, is surjective then each point y € G is joined by a geodesic arc
c(H)=Exp(tX) for some X € . By the displacements 7(e, x), x € G, we see that any
two points of G can be joined by a geodesic arc. Hence every displacement #(x, y)
induces the parallel displacement along a geodesic arc c(x, y) joining x to y. Thus,
for every left inner mapping L, ,=n(x"1, e(y, x (e, ), its linear representation
on G is an element of the holonomy group corresponding to the geodesic triangle
consisting of c(e, ), c(y, x~1) and c(x~%, ¢). It follows that dA,=dK,=®2, which
implies & =D(G). '

THEOREM 4. Let G=A|K be the reductive homogeneous space at ecG of a
geodesic homogeneous system (G, n). Suppose that dimG=2 and the restricted
holonomy group @9 of the canonical connection is irreducible on the tangent L.t.a.
®. If the Lie algebra U of A is reductive, then (G, n) is regular. :

Proor. Let AW=G+K be the canonical decomposition of the Lie algebra 2.
By the assumption for @9, the inner derivation algebra D(®) is not trivial. Put
A, =G+ D(G) (direct sum). Then U, is an ideal of A. Since U is supposed to be
reductive there exists a complementary ideal %, in 2 such that W=, +A; (direct
sum). Let G, be the subspace of ® consisting of all G-component of the element of
Ay. Then [K], G,]1cG, so G, is a dK-invariant subspace of G. Since the linear
representation dK on ® contains @9, it acts irreducibly on . Thus G;=0 or G,=6.
If ;=6 then [6, A, ]=[U,, A,;]=0 which implies D(G)=0. This can not occur
in our case. Hence G,=0 and so 2, is contained in K. Since 4 acts effectively on
G, we get Wy=0 and A=,. ' g.e.d.

§4. Invariant Homogeneous Subsystems

Let (G, ) be a homogeneous system. A homogeneous subsystem (H, ng) of
(G, n) is a connected submanifold H of G in which # is closed and its restriction ng:
Hx HxH—H is differentiable. We denote a homogeneous subsystem (H, 1) by
H.

A homogeneous subsystem H of (G, 1) will be said to be invariant if the following
condition is satisfied; '

() n(x, ym(H, x, Hy=n(H, y, H)  for x, yeG.
Suppose that H is an invariant subsystem of (G, #).
Lemma 1. n(H, x, Hy=1n(e, x)H  for any ecH.

Proor. By the condition (x) we get n(H, x, H)=n(e, x)y(H, e, H)=n(e, x)H,
if ee H. . - _ : . g.e.d.
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We denote n(H, x, H) by xH.
 LEmMMA 2. yexH ifand only if xH=yH.

Proor. If xH=yH then y=yl(e, y, eye yH=xH. Conversely, if yexH then
y=n(e, x, h) for some e, he H. By (+) and Lemma 1 we get YH=n(x, y)xH=n(x,
n(e, x, Wn(e, x)H =n(e, x)n(e, HH=xH. ' : ©og.e.d.

LemMa 3. n(x, ) (uH)=vH if v=n(x, y,u)  for x,y,ueG.

Proor. For any ee H, we get y(x, y)(uH)=n(x, y)n(e, uyH=n(x, yu(x, u)(e,
X)H =n(x, yn(x, wn(y, x)n(e, y)H=n(y, v)(e, y)H=n(e, v)H=vH.  g.e.d.

CoroLLARY. #(xH, y, xH)=n(H, y, H)Y  for x, yeG.

Proor. n(xH, y, xH)=n(e, x)n(H, n(x, e, y), H)=n(e, x)(n(x, e, y)H)=yH=
n(H, y, H), since n(e, x, n(x, e, y))=y. ) g.e.d.

ProrosiTioN 9. If H is an invariant subsystem of (G, 1), then for any xeG,
xH is again an invariant subsystem.

Proor. By Lemma 1 we see that xH is a submanifold of G diffeomorphic to H
under the diffeomorphism (e, x), ee H. Moreover, for u, v, we xH, there exist
a, b, ce H such that u=n(e, x, a), v=y(e, x, b) and w=y(e, x, ¢). Then #(u, v, w)
=1(e, x)n(a, b, c)exH. Thus we see that xH is a homogeneous subsystem. Using
the corollary to Lemma 3 we get n(y, 2n(xH, y, xH)=n(y, zq(H, y, H)=y(H, z, H)
=#n(xH, z, xH), y, ze€ G. This shows that xH satisfies the condition (). g.e.d.

Lemma 2 and Proposition 9 show that if H is an invariant subsystem of (G, #)
then G is decomposed into the disjoint union of invariant subsystems isomorphic to
H.

ProposITION 10. A homogeneous subsystem H of (G, n) is invariant if and only
if H is invariant under the left inner mapping group A, of G at some ec H.

ProoF. Since 4, is the isotropy subgroup of the group D(i7) of displacements of
n at e, a subsystem H of G is invariant under A, if and only if n(y, ep(x, yIn(e, x)H=H
hold for all x, ye G. Therefore, if H is invariant under 4, we get n(x, y)n(e, x, H)
=(e, y, H) for x, ye G and (e, y, H)=n(h, y, H)for he H, ye G. Hence H satisfies
(%). Conversely, if H is an invariant subsystem then the condition () implies that H
is invariant under A4,. q.e.d.

Now we shall consider the tangent L.t.a.’s of invariant subsystems of (G, ).
Let ® be a L.t.a. (general Lie triple system) and $ a (triple) subalgebra of ®, i.e.,
$ satisfies HH<H and [H, H, H1<H in 6. H will be called an invariant sub-
algebra of ® if it is invariant under the inner derivation algebra D(®) of ‘®, i.e.,
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D(G)H<$H.

Assume that the homogeneous system (G, #) is regular. If § is an invariant
subalgebra of the tangent L.t.a. ® of G at ee G, then § is invariant under the group
A, Let S: xS, =n(e, x),H be the distribution on G. Since $ is invariant
under A,, we have 7(x, y)xS,=8,. On the other hand, since the differential n(e, x)4
of the displacement #5(e, x) is equal to the parallel displacement along some piecewise
geodesic curve from e to x, and since $ is invariant under the holonomy group at
e, the distribution & is a parallel distribution on G.

ProrosiTioN 11. The distribution & is completely integrable and each
maximal integral manifold of S is an invariant subsystem of (G, n). Moreover
they are geodesic homogeneous systems.

Proor. Since & is a parallel distribution, the torsion tensor S is parallel and
S(X, Y)e$ for X, Ye$, we see that the vector field S(X*, Y*) belongs to & for any
vector fields X*, Y*e&. Hence S is inducible to & in the sense of [1] and so &
is completely integrable by Proposition 1 in [1]. Let H be the maximal integral
manifold of & containing e. Since (G, 1) is geodesic we see that any geodesic x(?)
in G tangent to $ at e=x(0) is contained in H, and that the displacement #(e, x(?))
sends each geodesic through e to a geodesic through the point x(f). The canonical
connection of # is complete and so every point y € H can be joined by geodesic arcs
contained in H. By using the facts seen above we can show that the submanifold H
is an auto-parallel submanifold of G, and that if ¢’ belongs to H, the displacement (e, ¢’)
sends H onto itself. If eis replaced by ¢’ and $ by £ =n(e, €),$ in the discussion
above, we get the same distribution on G as &. Therefore #(H, H, H)=H holds. The
differentiability of # on H x H x H follows from the 2nd countability of G. Thus H is
a homogeneous subsystem of G. Let x be any point of G. By the affine isomorphism
n(e, x) we have an auto-parallel submanifold H'=#(e, x)H. Since 7(e, x) preserves
the parallel displacements along geodesic arcs, we can show that the tangent space to
H’ at each point of H' is equal to the value of & at the point, that is, H' is an integral
manifold of ©. In the same way, we see that n(x, y)n(e, x)H=n(e, y)H for x, y €G,
which shows that H is invariant under A,. Thus the proof of the first half of the
proposition is com pleted by Propositions 9 and 10. The remaining half is proved
easily by the fact that the auto-parallel submanifold H of G has the connection in-
duced from G in a natural manner and that it coincides with the canonical connection
of (H, ng). g.e.d.

THEOREM 5. Let (G, 1) be a regular geodesic homogeneous system, ® its tangent
L.t.a. at eeG. There exists a 1-1 correspondence between the set of (connected)
invariant subsystems of G containing e and the set of invariant subalgebras of ©.
The correspondence is given in such a way as an invariant subalgebra $ of © is
the tangent L.t.a. of an invariant subsystem H of G.
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Proor. Let $ be an invariant subalgebra of &. Then from Proposition 11
there exists a unique connected invariant subsystem H of (G, 1) such that  is tangent
to H at e. Since the canonical connection of H is equal to the connection induced
from the canonical connection of G, we see that § is the tangent L.t.a. of H. Con-
versely, if H is an invariant subsystem of (G, 7)), then its tangent L.t.a. $ at ee H
is a subspace of ® such that D(G)H<$, since it is invariant under the holonomy
group of G at e which is equal to dK,. The submanifold H must be the maximal inte-
gral manifold of the parallel distribution & in Proposition 11 for the subspace $.
Since (G, 1) is geodesic so is the subsystem H and it is an auto-parallel submanifold
of G w.r.t. the canonical connection. Thus the torsion and curvature of the canonical
connection of (H, #y) is the restriction of those of (G, 1) on H. Hence the tangent
L.t.a. $ of (H, ng) is an invariant subalgebra of ® at e. g.e.d.

REMARK. In the preceding theorem, if (G, #) is a homogeneous system of a
geodesic homogeneous Lie loop considered in §1, then we get the main theorem of
[3] for the regular case. Especially, if (G, #) is a homogeneous system of a connected
Lie group G, the correspondence of the invariant subalgebra $ of & and the invariant
subsystem H of (G, #) is that of Lie subalgebra $ and Lie subgroup H.
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