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Im this paper, ~homogeneous systelns which have beem introduc~d iu [4] will be considired on 

difiierentiable manifolds. It is intended to show that the various results in [2]9 [3] .for a homogene* 

ous-Lie loop G are essentially those results _for the homogeneous system -of G. Let (G, ~~) be- a 

differentiable homogeneous system on a connected differentiable manifold G. The canonical 

connection amd the tamgent Lie triple algebra of (G, xp) are defined in SS I , 2 in the same way as 

in the case of homogeneous Lie loops [2]. At any poiut e, G can be expressed as a reductive ho-

mogeneous space A/K with the canonical connection and with the decomposition ~~ = ~ + ~~ of the 

Lie algebra of A , where ~ is the tangemt L. t. a. of (G, ~) at e. Ih S 3 we shall treat of the regular 

homogeneous system, a geodesic homogeneous systeln G in which the linear representation of K 

on ~; coincides with the holonomy group at e. The following fact will be shown in S 4 ; if (G, ~) 

is a regular homogeneous system, then there exists a 1-1 correspondence between the set of 

invariant subsystem of G and the set of invariant subalgebras of its tangent L. t. a. (Theorem 5). 

S 1. Camomical Connection of Homogemeous Systems 

Let n be a differentiable homogeneous system on a connected (C"-class) differ-

entiable manfold G of dimension n ; that is, a differentiable map n : G x G x G->G 

satisfymg (1) n(x, x, y) =n(x, y, x) =y, (2) n(x, y, n(y, x, z)) = z and (3) n(x, y, n(u, 

v, w)) =n(n(x, y, u), n(x, y, v), n(x, y, w)) for any x, y, z, u, v, w e G (cf. [4]). Each 

displacement n(x, y) : G->G of n defined by zH>n(x, y, z), z e G, is a diffeomorphism 

of G. Throughout this paper the manifold G is always assumed to be connected and 

second countable 

Now we introduce a linear connection on G associated with n as follows : Let 

lc : P(G)~G be the bundle of linear frames on G. For each frame u e P(G) at a = Ic(u) 

e G, Iet ~* be a global cross section of P(G) through u which is given by ~*(x) = n*(a, 

x)u for x e G, where n*(a, x) denotes the map of linear frames induced from the diffeo-

morphism n(a, x). For any g e GL(n, R) acting on P(G) on the right we have (~*(x))g 

= ~*g(x). Hence the n-dimensional distribution Q which assigns to each u e P(G) 

the tangent space Q* to.the section ~ * at u is right invariant and so the infinitesimal 

connection of P(G) with Q as its horizontal subspaces is defined and it induces a linear 

connection V on G, which will be called the canonical connection of n 

EXAMPLE. Let G be a connected homogeneous Lie loop under the binary 
operation xy = //(x, y) (cf. [2]), that is, p is a differentiable loop on the manifold G 

whose left translations L* : yH>xy satisfy the conditions ; (1) for each x e G there exists 
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an inverse x~1 of x such that (L~-1=Lx~1 and (2) every left inner mapping Lx,y ' = 

Lx~ylLxLy is an automorphism of ll･ If we set n(x, y, z) : =p:(x, //(x~1y, x~1z)) for 

x, y, z e G, we see that n is . a; homogeneous system on G. In this case the canonical 

connection of /1 introduced in [2] is nothing but the canonical connection of n defined 

above. In particular, if // is a Lie grQup 'thel~ t.he .connection is the ( - )-connection of 

E. Cartan. 

For a fixed e e G, we have seen in [4] that the homogeneous system rt defines a 

binary operation u(e)(x, y) : = n(e, x, y) whose left translations have the same proper-

ties as ･those of homogeneous loops; that is, e is the identity of It(e) and the conditions 

(1) -and (2) in the example above are satisfied for x~1=n(x, e, e). Moreover, the 

equality n(x, y, z) = //(~')(x~ p(=e)(x~~ty, x~Lz)) holds and, since -n is differentiable in 

the present case, 14(e) is a homogeneous Lie loop if and only if all of the right transla-

tions of pt(e) are diffeomotphisms.of G (cf. Theorem 2 of [4]). Thus we see that the 

concept of differentiable homogeneous systems on mamfolds is a slight generalization 

of that of homogeneous Lie loops, under the base point (identity element) free version 

In fact we have ; 

~PROPOSITION 1. ' For each pojnt e e G, the multjplication p(e) forms a local 

homogeneous 'Lie loop arou.nd e. ' ~ 
PRooF. We are only to show the fact that every right translation of l/(e) restricted 

to a neighbourhood of e is a local diffeomorphism. This follows directly from the 

differentiability of l/(') and the equality /h(e)(x, e) = x. q. e. d 

Let Au t (n) denote the group of all differentiable automorphisms of n . It contains 

the group D(n) of displacements of n. For a point e e G fixed, denote by Ae the left 

inner m, apPin~ 9roup of l/(e), whi_ch is the same as the isQtropy subgroup of the 
group D(n) a~ e (see [2, S I] and [4, S 3]). 

' the sections { ~*;'u ~ p(G)} of the frame bundle P(G) considered above are 

invanant under any automorphism of n . Hence we have 

PROPOSITION 2. The automorphism group Aut(n) of a homogeneotis. syst~m 
n on G'~is a closed subgroup of the a~ne transfor~cation group of the canonicat connec-

tion ~ ofn. ~ ~ 
COROLLARY. The group of displacements of n and the left ~inner mapping group 

Ae of n at e are subgroups of the affine transforma,tion group of V 

In the analogous way to the case of homogeneous Lie loops [2, 3], we c~n show 

that the homoge~leous system~(G, n) with a base point e is identified in a nat_1:Jral manner 

to a reductive homogeneous' space with the canonical connection of the second kind 

An ~ outline ･ of the construction is as follows : ' Let Ke be the closure of the left in~ler 
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mapping group A. in the isotropy subgroup of the Lie transformation group Au t (n) 

at e. Then K. is a Lie group and the product manifold A = G x Ke is again a Lle group 

under the group multiplication (x, cc) (y. P) : = (,/(')(x, oc(y)), L*,.(y)oc p), for (x, oc), 

(y, P) e A. The closed subgroup K : = {e} x K. of A is isomorphic to K. under the 

natural projection. As the tangent space at the identity e x I G, the Lie algebra ~~ 

of A is decomposed into the dir~ct sum ~T=(5+~ of the tangent space ~ = T.(G) to 

G at e and the Lie algebra S~ of the Lie group K.. Since the submanifold G x I G of A 

is invanant under the inner automorphisms by elements of K, we' have Ad(K)~; c ~ 

and we see that A/K is a reductive homogeneous space. In this case A acts effectively 

on A/K. The map f : 4/K->G defined by f(x x K~ = x, x e G, is a diffeomorphism 

which induces an aifine isomorphism of t~e 9anopical copn~ctipn _of. A/K tp the 9~noni-

cal connection of n on G. We summarize these facts as follows ; (cf. [5]) 

THEOREM 1. Let G be a connected- differentiable manif'old admitting a homq-_ 

geneous system n, A* be its left inn.er mapping group at a base point e. -Then, w;'r. t-. 
the point e, G can be expressed as a reductive hbmogeneous space A/K such that the 

canonical connection of n is expressed as the canonical connection of A/K, where A 

= G x K., K.=A. and the subgroup K of A is isolnorphic to K.. 

S 2. Tamgemt Lie Triple Algebras 

Let G = A/K be the reductive hQmogeneous space at e'e G of the homogeneous 

system n on G, with the canonical decomposition of the ,Iiie algebra 2~ of A ; 2~ = ~ + s~, 

Ad(K)~ c ~;. Since A acts effectively on ' G, Ke can be identified= with'･ its, Iinear ~epre-

sentation on ~5, the latter is identified with the adjoint representation 'of K restricted 

on the subspace ~; of the Lie algebra ~~. (cf. [6] , [7], [8]). 

Let S and R denote the torsion and curvature tensors of the canonical connection 

V of n respectively, opposite in their signs to the usually defined ones. Since - V is 

identified with the canonical connection of A/K, we see that VS=0 and VR=0, and 
they ' are evaluat~d at ~e as follows; S.(X, ~) = [X, Y]~~, R.(~, Y)Z~~[[X, Y]~~' Z] 

for X, Y, Z e ~, where [ l~ (resp. [ ~]s~) is the ~-c6mponent (resp.' S~;-component) of 

the bracket in the Lie algebra ~r = ~; + s~ . ･ Furtheirmore, applying the -results on redue-

trve homogeneous space ([8]) to our case, we get the following propositions 

PROPOSITION 3. The restricted holonomy group c~ of the canonical connec-

tion (with reference point e) is a normal subgroup of the linear representation of 

Ke=Ae on ~= Te(G). 

PROPOSITION 4. For each X e ~, the 1-par,ameter subgroup exp tXi(x(t), 
oc(t)) of A = G x Ke 9enerated by X acts as parallel displacement along the geodesic 

x(t)froin e=x(O). . ･ . - _. _. . - . . - . . _: 
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A homogeneous system n on G will be said to be geodesic if, for any two points 

x, y on any geodeslc arc c (w. r. t. V), the displacement n(x, y) induces the parallel 

displacement of tangent vectors from x to y along c. By using Proposition 4 we can 

show that the following proposition whose proof will be omitted (cf. [5]) 

PROPOSITION 5. A homogeneous system (G, n) is geodesic if and only if the Lie 

group A=G x K. has the following property: For each X e (~ the 1-parameter sub-

group exp tX is contained in the sublnamfold G x IG of A. 

REMARK. In [2] we have introduced the concept of geodesic homogeneous Lie 

loops. The proposition above shows that a homogeneous Lie loop is geodesic if and 

only if its homogeneous system given in the example in S I is geodesic. 

In the same way as in the case of geodesic homogeneous Lie loops, we introduce 

the concept of tangent Lie triple algebras of geodesic homogeneous systems. On the 

tangent space ~.=T.(G) to a homogeneous system (G, n) at e, we define a bilinear 

operation XY and a trilinear operation [X, Y, Z], X, Y, Z e ~5. as XY: = S.(X, Y) 

and [X, Y, Z] : = R.(X, Y)Z. The tangent space ~. equipped with these operations 

will be called the tangent Lie triple algebra of (G, n) at e. 

PROPOSITION 6. The tangent L, t. a. at any point e of (G, n) is a general Lie 

triple system. 

The tangent L. t, a. ~. at e of the geodesic homogeneous system (G, n) is related 

to the multiplication l/(*) in the following manner : Consider the product (x, I G) (y, 

IG)=(/1(e)(x, y), L*,y) of any elements of G x IG in the Lie group A = G x K.. For 

any X, Ye R., if x = exp tX and y = exp SY then the G-component //(')(x, y) and the 

K~component L*,y induce the infinitesimal operators /1*(') and A* Such that /1*(')(X, Y) 

= [X*, Y*]. for the vector fields X*(z) = n*(e, z)X, Y*(z) = n*(e, z) Y, z e G, and that 

h* : ~5 x ~5 -> S~ is a bilinear map induced from ~(x, y) = L*,y by taking account of the 

properties Lx,'=L..* = I G. Then we have ; (cf. [5]) 

PROPOSITION 7. The bilinear and trilinear operations XY and [X, Y, Z] 
of the tangent L. t. a. of a geodesic homogeneous system (G, n) at e is expressed, 

respectively, as XY=p*(e)(X, Y) and [X, Y, Z] =ad(h*(X, Y)-~*(Y, X))Z for X, 
Y. Z e ~5.. 

Smce every displacement of n is an automorphism of n, it induces an isomorphism 

of the multiplications p(*) and ll(") at any e and e'. Therefore, the tangent L. t.a..'s 

of a geodesic homogeneous system are isomorphic with each other. _ 

S.3. Regular Homogeneous Systems 

Let (G, ~) be a geodesic homogeneous system and ~ = ~5, its tangent Lle tnple 
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algebra at e. An inner derivation D(X, Y) of ~ for X, Ye ~ is an endomorphism of 

~ given by D(X, Y)Z=[X, Y, Z] for Z e ~. We denote by D(~) the inner derivation 

a lgebra of ~ which is by definition a Lie subalgebra of End (~) generated by all inner 

derivations of ~. D(~) is an ideal of the Lie algebra adS~l~=S~. With respect to the 

canonical connection V, D(X, Y) = R.(X, Y). Since VR=0, D(~5) is equal to the 

Lie algebra of the holonomy group of V at e. 

Suppose that G is a Lie group and (G, n) is the homogeneous system on G induced 

by the group multiplication of G. Then the left inner mapping group A. at the identity 

e is the trivial group consisting of IG. Hence A = G x IG and S~ = D(~) = {O}. In this 

case the tangent L. t. a. (~; is reduced to the Lie algebra of G with the bracket [X, Y] 

=XY and [X, Y, Z] =0 for any X, Y, Z e ~. V is an invariant connection on G 
such that VS=0 and R = O, that is the ( - )-connection. 

A geodesic homogeneous system (G, n) will be said to be regular if, at some point 

e, the linear representation dK* of the Lie group K. on the tangent L. t. a. (5 at e coin-

cides with the holononry group ep. of V at e. It is easy to see that the definition for 

(G, n) to be regular does not depend on the choice of the base point. 

PROPOSITION 8. A geodesic homogeneous system (G, n) is regular if and only 
if ~~ = D(~;). 

PRooF. If (G, n) is regular then it is clear that ~ = D(~5) since the Lie groups 

dK. = Ad(K) and ~. coincides with each other. Conversely, if St; = D(~;) then dK. 

is equal to the restricted holonomy group ~~. Let c be any closed piecewise differ-

entiable curve in G with the base point e. There exists a piecewise geodesic closed curve 

c' homotopic to c with the fixed end point e. Since (G, n) is supposed to be geodesic, 

the parallel displacement along c' is expressed as a composition of the differentials of 

displacements which must belong to the linear representation of A.. From T~1lc. e 

ep~ = dK, we see that T. belongs to dK., where T. denotes the parallel displacement along 

As we have seen above the homogeneous system of any connected Lie group is 

regular with D(~) = O. Conversely we have ; 

THEOREM 2. If a geodesic homogeneous system (G, n) js regular with D(~) =0, 

then the multiplication //(')(x, y)=n(e, x, y) defines a Lie group on G whose homo-

geneous system is (G, n). 

PRooF. Slnce the maps (x, y)H>//(')(x, y) and xH>x~1=n(x, e, e) are differ-

entiable, it is sufiicient to show that l/(') is an abstract group. From the assumption 

it follows that dA.cdK. = ep~={1~}･ Since the linear representation of K. is faith-

ful, we get IG=L*,y for x, y e G which shows that p(') is a group (cf. [4]). q. e. d. 

THEOREM 3. A geodesic homogeneous system (G, n) is regular if the exponential 
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map Exp*: ~->G of the canonica,1 connection V is surjective at some point e e G. 

PROOF. If Exp. is surjective then each point y e G is joined by a geodesic arc 

c(t) = Exp.(tX) for some X e (~;. By the displacements n(e, x), x e G, we see that any 

two points of G can be joined by a geodesic arc. Hence every displacement n(x, y) 

induces the parallel displacement along a geodesic arc c(x, y) J Oining x to y. Thus, 

for every left inner mapping Lx,y = n(x~1, e)n(y, x~1)n(e, y), its linear representation 

on R is .an element of the holonomy group corresponding to the geodesic tnangle 

consisting of c(.e, y), c(y, x~1) and c(x~1, e). It follows that dA.=dK. = ~~, which 

implies S~ = D(~). 

THEOREM 4. Let G=A/K be the reductive homogeneous space at e eG of a 
geodesic homogeneous system (G, n). Suppose that dim G_>_2 and the restricted 

holonomy group ep~ of the can.onical connection is irreducible on the tangent L, t. a. 

~5. If the Lie algebra ~~ of A is reductive, then (G, n) is regular. 

PRooF. Let ~~ = ~ + ~ be the canonical decomposition of the Lie algebra ~~. 

By the assumption for ~~, the inner derivation algebra D(~) is not trivial. Put 

~~i=~;+D(R) (direct sum). Then ~rl is an ideal of ~~. Since ~~ is supposed to be 

reductive there exists a complementary ideal ~~o in ~~ such that ~~ = ~~o + ~~i (direct 

sum). Let ~o be the subspace of ~ consisting of all ~-component of the element of 

~~o ' Then [S~:, ~;o] c ~;o so ~o is a dK-invariant subspace of ~ . Since the linear 

representation dK on ~ contains ~~, it acts irreducibly on ~. Thus ~50=0 or ~0=~' 

If ~;0=~ then [(~;, ~~l] c [~~0, ~~l] =0 which implies D(~)=0. This can not occur 

in our case. Hence ~.o = O and so ~~O is contained in ~;. . . Since A . a_cts effectively on 

. ~ ~ ･ e! d.~ 
G, we get ~~o =0 and-~1= ~~1 

S 4. Imvariamt Homogeneous Subsystems 

Let (G, n) be a homogeneous system. A homogeneous subsystem (H, nH) of 
(G, n) is a connected submanifold H of G in which n is closed and its restnction nH: 

H x H x H->H is differentiable. We denote a homogeneous subsystem (H, nH) by 

H. 
A homogeneous ~ubsystem H of (G, n) will bc said to be invariant if th~ following 

cdndition is satisfied ; 

(*) n(x, y)n(H, x, H) =11(H, y, H) for x y e G 

Suppose that H is an invariant subsystem of (G, n). 

LEMMA 1. n(H, x, H)=n(e, x)H for any e e H. 

PROoF. By the condition (*) we get ~(H, x, H) = n(e, x)n(H, e, H) n(e x)H 
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We denote n(H, x, H) by XH 

LEMMA 2. y exH ifand only ifxH=yH. 

PRooF. If XH=yH then y =n(e, y, .e) e yH=XH. Conversely, if y e XH then 

y ~n(e, x, -h) for some e, h ~ H. By (*) and Lemma I we _get' yH=n(x, y)xH=n(x, 

~(e, x, h))n(e, x)H = n(e, x)n(e, h)H = xH. ~ - ' q. e. d. 

LEMMA 3. n(x, y)(uH)=vH ifv=n(x, y, u) for x, y, u e G. 

PRooF. For any e e H, we _ get tl(x, y) (uH)=n(x, y)n(e, u)H = n(x, y)n(x, u)n(e, 

x)H = n(x, y)n(x, u)tl(y, x)n(e, y)H = n(J', v)n(e, y)H = n(e, v)H = vH. , q. e. d. 

COROLLARY. n(xH, y, xH) = n(H, y, H) for x, y e G. 

PRooF. n(xH, y, xH)=n(e, x)n(H, n(x, e, y), H) =n(e, x) (n(x, e, y)H)=yH= 

n(H y ~ H) since n(e x n(x, e, _y)) = y. 

PRoposmoN 9. If H is an invariant subsystem of (G, n), t/･ren for any x e G 

XH is again an invariant subsystem. 

PRooF. By Lemma I we see that XH is a submanifold of G diffe_omorphic to H 

under the diffeomorphism n(e, x), e e H. Moreover, for u, v, w e xH, there exist 

a b c e H such that u n(e x a) v n(e x b) and w n(e x, c). Then n(u, v, w) 

= n(e, x)~(a, b, c) e xH. Thus we see that XH is a homogeneous subsystem. Using 

the corollary to Lemma 3 we get n(y, z)n(xH, y, xH) = n(y, z)n(H, y, H) = n(H, z, H) 

n(xH z xH) y z e G This shows that XH satisfies the condition (*) 

Lemma 2 and Proposition 9 show that if H is an invariant subsystem of (G, n) 

then G is decomposed into the disjoint union of invariant subsystems isomorphic to 

H. 

PROPOSITION 10. A homogeneous subsystem H of (G, n) is invariant if and only 

if ~ is invariant under the left inner Inapping group Ae of G at some e e H. 

PRooF. _ Since Ae rs 'the rsotropy subgroup of the group D(n) of displacements of 

n at e, a subsystelri H 6f G is invariant undef Ae if and only if n(y, P..)n(x, y)n(e, x)H = H 

hold for all x, y e G. Theref6re, if H is invariant under A. we get n(x, y)n(e, x, H) 

= n(e, y, H) for x, y e G and n(e, y, H) = n(h, y, H) for h e H, y e G. Hence H satisfies 

(*). Conversely, if H is an invariant subsystem then the condition (*) implies that H 

is invariant under Ae' q. e. d. 

Now we shall consider the tangent L. t.a.'s of invariant subsystems of (G! ' n)' 

Let ~ be a L. t. a. (general Lie triple system) and ~ a (triple) subalgebra of ~, i. e., 

~ satisfies ~~ c~ and [~, ~, ~] c~ in ~. ~ will be called an invariant･ sub-
a lgebra of ~; if it is invariant under the i~mer derivation algebra D(~5) .of ･ ~, .i. e., 
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D(~5)~ c ~ . 

Assume that the homogeneous system (G, n) is regular. If ~ is an invariant 

subalgebra of the tangent L. t. a. ~5 of G at e e G, then ~ is invariant under the group 

Ae' Let ~~ : xH>~;x=n(e, x)*~ be the distribution on G. Since ~) is invariant 

under A*, we have n(x, y)*(~x = (~y. On the other hand, since the diff.erential n(e, x)* 

of the displacement n(e, x) is equal to the parallel displacement along some piecewise 

geodeslc curve from e to x, and since ~ is invariant under the holonomy group at 

e, the distribution ~~ is a parallel distribution on G. 

PROPOSITION 11. The distribution (~ is completely integrable and each 
maximal integral manlfold of ~; is an invariant subsystem of (G, n). Moreover 

they are geodesic homogeneous systelns. 

PROoF. Since e; is a parallel distribution, the torsion tensor S is parallel and 

S.(X, Y) e ~ for X, Ye~, we see that the vector field S(X*, Y*) belongs to e; for any 

vector fields X*, Y* e (~. Hence S is mducible to (~ in the sense of [1] and so ~; 

is completely integrable by Proposition I in [1]. Let H be the maximal integral 

manifold of e; containing e. Since (G, n) rs geodesic we see that any geodesic x(t) 

in G tangent to ~ at e = x(O) is contained in H, and that the displacement n(e, x(t)) 

sends each geodesic through e to a geodesic through the point x(t). The canonical 

connection of n is complete and so every point y e H can be joined by geodesic arcs 

contained in H. By using the facts seen above we can show that the submaniifold H 

is an auto-parallel submanifold of G, and that if e' belongs to H, the displacement n(e, e') 

sends H onto itself. If e is replaced by e' and ~ by ~'=n(e, e')*~ in the discussion 

above, we get the same distribution on G as ~; . Therefore n(H, H, H) = H holds. The 

differentiability of n on H x H x H follows from the 2nd countability of G. Thus H is 

a homogeneous subsystem of G. Let x be any point of G. By the affine isomorphism 

n(e, x) we have an auto-parallel submanifold H' = n(e, x)H. Since n(e, x) preserves 

the parallel displacements along geodesic arcs, we can show that the tangent space to 

H' at each point of H' is equal to the value of (~ at the point, that is, H' is an integral 

manifold of (~. In the same way, we see that n(x, y)n(e, x)H = n(e, y)H for x, y e G, 

which shows that H is invariant under A.. Thus the proof of the flrst half of the 

proposition is com pleted by Propositions 9 and 10. The remaining half is proved 

easily by the fact that the auto-parallel submanifold H of G has the connection in-

duced from G in a natural manner and that it coincides with the canonical connection 

of (H, nH). q. e. d. 

THEOREM 5. Let (G, n) be a regular geodesic homogeneous system, ~; its tangent 

L, t. a. at e e G. There exists a 1-1 correspondence between the set of (connected) 

invariant subsystems of G containing e and the set of invariant subalgebras of ~-

The correspondence is given in such a way as an invariant subalgebra ~ of ~ is 

the tangent L. t. a. of an invariant subsystem H of G. 
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PRooF. Let ~ be an mvariant subalgebra of ~. Then from Proposition 1 1 

there exists a umque connected invariant subsystem H of (G, n) such that ~ is tangent 

to H at e. Smce the canonical connection of H is equal to the connection induced 

from the canonical connection of G, we see that ~ is the tangent L, t.a. of H. Con-

versely, if H is an invariant subsystem of (G, n), then its tangent L, t. a. ~ at e e H 

is a subspace of ~ such that D(~)~ c ~, since it is invariant under the holonomy 

group of G at e which is equal to dK.. The submanifold H must be the maximal inte-

gral manifold of the parallel distribution ~ in Proposition 1 1 for the subspace ~-

Since (G, n). is geodesic so is the subsystem H and it is an auto-parallel subulanifold 

of G w. r. t. the canonical connection. Thus the torsion and curvature of the canonical 

connection of (H, nH) is the restriction of those of (G, n) on H. Hence the tangent 

L, t, a. ~ of (H, nH) is an invariant subalgebra of ~; at e. q. e. d. 

REMARK. In the preceding theorem, if (G, n) is a homogeneous system of a 

geodesic homogeneous Lie loop considered in S 1, then we get the main theorem of 

[3] for the regular case. Especially, if (G, n) is a homogeneous system of a connected 

Lie group G, the correspondence of the invariant subalgebra ~ of (!5 and the invariant 

subsystem H of (G, n) is that of Lie subalgebra ~ and Lie subgroup H. 
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