Characterizations of the solution set for quasiconvex programming in terms of Greenberg-Pierskalla subdifferential

Journal of Global Optimization 62 巻 3 号 431-441 頁 2015-07 発行
アクセス数 : 1121
ダウンロード数 : 106

今月のアクセス数 : 40
今月のダウンロード数 : 1
ファイル情報(添付)
1.pdf 84.4 KB エンバーゴ : 2015-07-12
タイトル
Characterizations of the solution set for quasiconvex programming in terms of Greenberg-Pierskalla subdifferential
著者
収録物名
Journal of Global Optimization
62
3
開始ページ 431
終了ページ 441
収録物識別子
ISSN 09255001
内容記述
その他
In convex programming, characterizations of the solution set in terms of the subdifferential have been investigated by Mangasarian. An invariance property of the subdifferential of the objective function is studied, and as a consequence, characterizations of the solution set by any solution point and any point in the relative interior of the solution set are given. In quasiconvex programming, how-ever, characterizations of the solution set by any solution point and an invariance property of Greenberg-Pierskalla subdifferential, which is one of the well known subdifferential for quasiconvex functions, have not been studied yet as far as we know. In this paper, we study characterizations of the solution set for quasiconvex programming in terms of Greenberg-Pierskalla subdifferential. To the purpose, we show an invariance property of Greenberg-Pierskalla subdifferential, and we introduce a necessary and sufficient optimality condition by Greenberg-Pierskalla subdifferential. Also, we compare our results with previous ones. Especially, we prove some of Mangasarian's characterizations as corollaries of our results.
主題
Quasiconvex programming ( その他)
Solution set ( その他)
Subdifferential ( その他)
言語
英語
資源タイプ 学術雑誌論文
発行日 2015-07
出版タイプ Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの)
アクセス権 オープンアクセス
関連情報
[DOI] 10.1007/s10898-014-0255-2
[NCID] AA10831465