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Abstract In convex programming, characterizations of the solution set in terms of
the subdifferential have been investigated by Mangasarian. An invariance property
of the subdifferential of the objective function is studied, and as a consequence,
characterizations of the solution set by any solution point and any point in the
relative interior of the solution set are given. In quasiconvex programming, how-
ever, characterizations of the solution set by any solution point and an invariance
property of Greenberg-Pierskalla subdifferential, which is one of the well known
subdifferential for quasiconvex functions, have not been studied yet as far as we
know.

In this paper, we study characterizations of the solution set for quasiconvex
programming in terms of Greenberg-Pierskalla subdifferential. To the purpose,
we show an invariance property of Greenberg-Pierskalla subdifferential, and we
introduce a necessary and sufficient optimality condition by Greenberg-Pierskalla
subdifferential. Also, we compare our results with previous ones. Especially, we
prove some of Mangasarian’s characterizations as corollaries of our results.

Keywords quasiconvex programming · solution set · subdifferential · optimality
condition

1 Introduction

In mathematical programming, optimality conditions by notions of differentials
are well known. Especially, in convex programming, necessary and sufficient opti-
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mality condition by the subdifferential plays important and essential roles. In [14],
characterizations of the solution set for convex programming in terms of the sub-
differential have been investigated by Mangasarian. At first, it is shown that the
subdifferential of the objective function is constant on the relative interior of the
solution set. As a consequence, characterizations of the solution set by any solution
point and any point in the relative interior of the solution set are given. Motivated
by these results, various characterizations of the solution set for mathematical
programming have been studied, for example, [2,8–12,23,29–31].

In quasiconvex programming, various subdifferentials and optimality condi-
tions have been investigated, see [4–7,13,15–22,24–28]. Greenberg-Pierskalla sub-
differential in [6] is one of the most important subdifferential for quasiconvex func-
tions. Greenberg-Pierskalla subdifferential is a simple concept in the research of
subdifferentials for quasiconvex functions, and is closely related to surrogate dual-
ity. Various result concerning with Greenberg-Pierskalla subdifferential have been
investigated extensively, for example, conjugate functions, duality theorems, op-
timality conditions, and so on. Especially, in [20], optimality conditions in terms
of Greenberg-Pierskalla subdifferential are given by Penot. Also, optimality condi-
tions in terms of infradifferential and lower subdifferential, and invariance proper-
ties of infradifferential and lower subdifferential are studied. However, as far as we
know, characterizations of the solution set by any solution point and an invariance
property of Greenberg-Pierskalla subdifferential have not been studied yet.

In this paper, we study characterizations of the solution set for quasiconvex
programming in terms of Greenberg-Pierskalla subdifferential. At first, we show an
invariance property of Greenberg-Pierskalla subdifferential. We introduce a neces-
sary and sufficient optimality condition by Greenberg-Pierskalla subdifferential. As
a consequence, we investigate characterizations of the solution set by any solution
point and any point in the relative interior of the solution set. Also, we com-
pare our results with previous ones. Especially, we prove some of Mangasarian’s
characterizations as corollaries of our results.

The remainder of the present paper is organized as follows. In Section 2, we
introduce some preliminaries and previous results. In Section 3, we study an in-
variance property of Greenberg-Pierskalla subdifferential. In Section 4, we show
an optimality condition by Greenberg-Pierskalla subdifferential. We investigate
characterizations of the solution set for quasiconvex programming in terms of
Greenberg-Pierskalla subdifferential. In Section 5, we compare our results with
previous ones.

2 Preliminaries

Let ⟨v, x⟩ denote the inner product of two vectors v and x in the n-dimensional
Euclidean space Rn. Given nonempty sets A, B ⊂ Rn, and Λ ⊂ R, we define A+B
and ΛA as follows:

A+B = {x+ y ∈ Rn | x ∈ A, y ∈ B},
ΛA = {λx ∈ Rn | λ ∈ Λ, x ∈ A}.

Also, we define A + ∅ = Λ∅ = ∅A = ∅. We denote the closure, and the relative
interior, generated by A, by clA, and riA, respectively. The normal cone of A at
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x ∈ A is denoted by NA(x) = {v ∈ Rn | ∀y ∈ A, ⟨v, y − x⟩ ≤ 0}. The indicator
function δA is defined by

δA(x) =

{
0 x ∈ A,
∞ otherwise.

Let f be a function from Rn to R, where R = [−∞,∞]. A function f is said to be
proper if for all x ∈ Rn, f(x) > −∞ and there exists x0 ∈ Rn such that f(x0) ∈ R.
We denote the domain of f by domf , that is, domf = {x ∈ Rn | f(x) < ∞}.
The epigraph of f is defined as epif = {(x, r) ∈ Rn × R | f(x) ≤ r}, and f is
said to be convex if epif is convex. The subdifferential of f at x is defined as
∂f(x) = {v ∈ Rn | ∀y ∈ Rn, f(y) ≥ f(x) + ⟨v, y − x⟩}. Define level sets of f with
respect to a binary relation ⋄ on R as

L(f, ⋄, β) := {x ∈ Rn | f(x) ⋄ β}

for any β ∈ R. A function f is said to be quasiconvex if for all β ∈ R, L(f,≤, β)
is a convex set. Any convex function is quasiconvex, but the opposite is not true.
A function f is said to be essentially quasiconvex if f is quasiconvex and each
local minimizer x ∈ domf of f in Rn is a global minimizer of f in Rn. Clearly,
all convex functions are essentially quasiconvex. It is known that a pseudocon-
vex differentiable function is essentially quasiconvex, see [3,8,9] for more details.
Also, it is shown that a real-valued continuous quasiconvex function is essentially
quasiconvex if and only if it is semistrictly quasiconvex, see Theorem 3.37 in [1].

In [6], Greenberg and Pierskalla introduced the Greenberg-Pierskalla subdif-
ferential of f at x0 ∈ Rn as follows:

∂GP f(x0) = {v ∈ Rn | ⟨v, x⟩ ≥ ⟨v, x0⟩ implies f(x) ≥ f(x0)}.

In this paper, we study the following quasiconvex programming problem (P):

(P )

{
minimize f(x),
subject to x ∈ F,

where f is a quasiconvex function from Rn to R, and F is a convex subset of Rn.
Let S be the solution set of (P), that is,

S := {x ∈ F | f(x) = min
y∈F

f(y)}.

In [14], Mangasarian studied the following characterizations of the solution set
for convex programming and an invariance property of the subdifferential.

Theorem 1 [14] Let f be a real-valued convex function, F a nonempty convex
subset of Rn, x̄ ∈ S, and x0 ∈ riS. Then the following statements hold:

(i) ∂f(x̄) ⊃ ∂f(x0),
(ii) ∂f(x) is constant on x ∈ riS,
(iii) the following sets are equal:

(a) S = {x ∈ F | f(x) = miny∈F f(y)},
(b) S̄ = {x ∈ F | ∃v ∈ ∂f(x̄) ∩ ∂f(x) s.t. ⟨v, x− x̄⟩ = 0},
(c) Ŝ = {x ∈ F | ∃v ∈ ∂f(x̄) ∩ ∂f(x) s.t. ⟨v, x− x̄⟩ ≤ 0},
(d) S̄0 = {x ∈ F | ∂f(x0) ⊂ ∂f(x),∃v ∈ ∂f(x0) s.t. ⟨v, x− x0⟩ = 0},



4 Satoshi Suzuki, Daishi Kuroiwa

(e) Ŝ0 = {x ∈ F | ∂f(x0) ⊂ ∂f(x),∃v ∈ ∂f(x0) s.t. ⟨v, x− x0⟩ ≤ 0},
(f) S̄1 = {x ∈ F | ∃v ∈ ∂f(x) s.t. ⟨v, x− x̄⟩ = 0},
(g) Ŝ1 = {x ∈ F | ∃v ∈ ∂f(x) s.t. ⟨v, x− x̄⟩ ≤ 0}.

In [20], Penot studied optimality conditions in terms of Greenberg-Pierskalla
subdifferential, infradifferential and lower subdifferential. The infradifferential of
Gutiérrez [7] is defined as follows:

∂≤f(x0) = {v ∈ Rn | ∀x ∈ L(f,≤, f(x0)), ⟨v, x− x0⟩ ≤ f(x)− f(x0)}.

The lower subdifferential of Plastria [22] is defined as follows:

∂<f(x0) = {v ∈ Rn | ∀x ∈ L(f,<, f(x0)), ⟨v, x− x0⟩ ≤ f(x)− f(x0)}.

The same inequality ⟨v, x− x0⟩ ≤ f(x) − f(x0), which appears in the definitions
of infradifferential ∂≤f(x0) and lower subdifferential ∂<f(x0), also appears in the
definition of the subdifferential ∂f(x). This inequality plays important roles in
subdifferential calculus. The following inclusions are also important:

∂≤f(x0) ⊂ ∂<f(x0) ⊂ ∂GP f(x0). (1)

We introduce Penot’s optimality conditions and invariance properties.

Theorem 2 [20] The following statements hold:

(i) Let f be quasiconvex, F a convex set, and x ∈ F which is not a local minimizer
of f in Rn. Assume that f is upper semicontinuous (usc) at each point of
L(f,≤, f(x)). Then, x ∈ S if and only if ∂GP f(x) ∩ (−NF (x)) ̸= ∅.

(ii) Let f be continuous essentially quasiconvex and infz∈F f(z) > infz∈Rn f(z).
Assume that f is Lipschitzian on L(f,≤, infz∈F f(z)). Then, x ∈ S if and only
if ∂≤f(x) ∩ (−NF (x)) ̸= ∅ if and only if ∂<f(x) ∩ (−NF (x)) ̸= ∅.

(iii) ∂≤f(x) ∩ (−NF (x)) is constant on x ∈ S.
(iv) If f is quasiconvex, then ∂≤f(x) is constant on x ∈ riS.
(v) If f is continuous essentially quasiconvex and infz∈F f(z) > infz∈Rn f(z), then

∂<f(x) is constant on x ∈ riS.

In [19], the following relations between subdifferentials have been investigated.

Theorem 3 [19] Let f be a convex function finite at x. If x is not a global mini-
mizer of f in Rn, then

[1,∞)∂f(x0) = ∂≤f(x0) = ∂<f(x0),

where [1,∞) = {t ∈ R | t ≥ 1}.
Moreover, if R+(domf + {−x}) = Rn, then

R++∂f(x0) = (0, 1]∂≤f(x0) = (0, 1]∂<f(x0) = ∂GP f(x0),

where R+ = {t ∈ R | t ≥ 0}, R++ = {t ∈ R | t > 0}, and (0, 1] = {t ∈ R | 0 < t ≤
1}.
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3 Invariance properties of Greenberg-Pierskalla subdifferential

As seen in Theorem 1 (ii), the subdifferential of the convex objective function is
constant on riS. Characterizations of the solution set in [14] are consequences of
this invariance property. Motivated by this, we study an invariance property of
Greenberg-Pierskalla subdifferential. Throughout this section, let f be an essen-
tially quasiconvex function from Rn to R, F a nonempty convex subset of Rn, and
S = {x ∈ F | f(x) = miny∈F f(y)}. Since f is quasiconvex and F is convex, S is
also convex.

At first, we observe an invariance property of ∂GP f(x) ∩ (−NS(x)).

Theorem 4 Let f be an essentially quasiconvex function, and F a nonempty
convex subset of Rn. Then, for each x, y ∈ S,

∂GP f(x) ∩ (−NS(x)) ⊂ ∂GP f(y).

Furthermore, if infz∈F f(z) > infz∈Rn f(z), then ∂GP f(x)∩ (−NS(x)) is constant
on x ∈ S.

Proof Let v ∈ ∂GP f(x) such that v ∈ −NS(x). Since y ∈ S and v ∈ −NS(x),
⟨−v, y − x⟩ ≤ 0, that is, ⟨v, y⟩ ≥ ⟨v, x⟩. Then, by the definition of Greenberg-
Pierskalla subdifferential, for each z ∈ Rn with ⟨v, z⟩ ≥ ⟨v, y⟩,

f(z) ≥ f(x) = f(y).

This shows that v ∈ ∂GP f(y).
Assume that infz∈F f(z) > infz∈Rn f(z). It is clear that x and y are not global

minimizers of f in Rn. Let v ∈ ∂GP f(x)∩(−NS(x)). Since y ∈ S and v ∈ −NS(x),
⟨v, y⟩ ≥ ⟨v, x⟩. If ⟨v, y⟩ > ⟨v, x⟩, then there exists a neighborhood U of y such
that U ⊂ {z ∈ Rn | ⟨v, z⟩ > ⟨v, x⟩}. Since y is not a global minimizer and f is
essentially quasiconvex, there exists z0 ∈ U such that f(z0) < f(y). It is clear that
⟨v, z0⟩ > ⟨v, x⟩. Since v ∈ ∂GP f(x) and ⟨v, z0⟩ > ⟨v, x⟩,

f(z0) ≥ f(x) = f(y) > f(z0).

This is a contradiction. Hence ⟨v, y⟩ = ⟨v, x⟩, that is, v ∈ −NS(y). This shows
that

∂GP f(x) ∩ (−NS(x)) ⊂ ∂GP f(y) ∩ (−NS(y)).

Similarly, we can prove the converse inclusion. This completes the proof.

Theorem 5 Let f be an essentially quasiconvex function, F a nonempty convex
subset of Rn, x̄ ∈ S and x0 ∈ riS. Then the following statements hold:

(i) if infz∈F f(z) > infz∈Rn f(z), then ∂GP f(x0) ⊂ −NS(x0),
(ii) ∂GP f(x0) ⊂ ∂GP f(x̄).

Proof (i) Let v ∈ ∂GP f(x0) and y ∈ S. Assume that ⟨v, y − x0⟩ < 0. Since x0 ∈
riS, z0 = y + (1 + ε)(x0 − y) ∈ S for sufficiently small ε > 0. Then,

⟨v, z0⟩ = (1 + ε) ⟨v, x0⟩ − ε ⟨v, y⟩
= ⟨v, x0⟩+ ε(⟨v, x0⟩ − ⟨v, y⟩)
> ⟨v, x0⟩ .
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Since infz∈F f(z) > infz∈Rn f(z), z0 is not a global minimizer of f in Rn. By
the definition of essential quasiconvexity, there exists z̄ ∈ L(f,<, f(z0)) such that
⟨v, z̄⟩ > ⟨v, x0⟩. However, since v ∈ ∂GP f(x0),

L(f,<, f(z0)) = L(f,<, f(x0)) ⊂ L(v,<, ⟨v, x0⟩).

This is a contradiction. Hence, v ∈ −NS(x0).
(ii) If infz∈F f(z) = infz∈Rn f(z), then ∂GP f(x0) = ∂GP f(x̄) = Rn. Let v ∈

∂GP f(x0) and assume that infz∈F f(z) > infz∈Rn f(z). By the condition (i), we
can see that ∂GP f(x0) ⊂ −NS(x0). Also, by Theorem 4,

v ∈ ∂GP f(x0) ∩ (−NS(x0)) ⊂ ∂GP f(x̄).

This completes the proof.

In the following theorem, we show an invariance property of ∂GP f(x) on x ∈
riS.

Theorem 6 Let f be an essentially quasiconvex function, and F a nonempty
convex subset of Rn. Then ∂GP f(x) is constant on x ∈ riS.

Proof Let x, y ∈ riS. By Theorem 5 (ii), ∂GP f(x) ⊂ ∂GP f(y) and ∂GP f(x) ⊃
∂GP f(y). This completes the proof.

4 Characterizations of the solution set

In this section, we show characterizations of the solution set for quasiconvex pro-
gramming in terms of Greenberg-Pierskalla subdifferential.

As seen in Theorem 2, Penot studied necessary and sufficient optimality condi-
tions for quasiconvex programming in terms of Greenberg-Pierskalla subdifferen-
tial, infradifferential, and lower subdifferential. We show another necessary and suf-
ficient optimality condition for usc essentially quasiconvex objective by Greenberg-
Pierskalla subdifferential.

Theorem 7 Let f be a usc essentially quasiconvex function, F a nonempty convex
subset of Rn, and x ∈ F . Then, the following statements are equivalent:

(i) f(x) = min
y∈F

f(y),

(ii) 0 ∈ ∂GP f(x) +NF (x).

Proof Assume that infz∈F f(z) = infz∈Rn f(z). If x is a minimizer of f in F , then
we can prove easily that ∂GP f(x) = Rn. Hence the condition (ii) holds. Conversely,
if the condition (ii) holds, then there exists v ∈ ∂GP f(x) such that v ∈ −NF (x).
Since v ∈ −NF (x), for each y ∈ F , ⟨v, y⟩ ≥ ⟨v, x⟩. Also since v ∈ ∂GP f(x),
f(y) ≥ f(x). This shows that the condition (i) holds.

Assume that infz∈F f(z) > infz∈Rn f(z). Then it is clear that x is not a global
minimizer of f in Rn. By the definition of essential quasiconvexity, x is not a local
minimizer of f in Rn. Hence by Theorem 2 (i), the conditions (i) and (ii) are
equivalent.
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In Theorem 7, upper semicontinuity of f is needed. We show the following
example.

Example 1 Let F = [0, 1]× [0, 1], and f a real-valued function on R as follows:

f(x1, x2) =


x1 x1 > 0,
0 (x1, x2) = (0, 0),

x2√
x2
1+x2

2

− 1 otherwise.

Then, F is convex, f is essentially quasiconvex, x0 = (0, 0) is a global minimizer of
f in F , and f(x0) = 0. However, f is not usc since f(0,−1) = −2 and f( 1k ,−1) = 1

k
converges to 0.

We show that ∂GP f(x0) is empty. Assume that v = (v1, v2) ∈ ∂GP f(x0), then
for each x ∈ Rn, ⟨v, x⟩ ≥ ⟨v, x0⟩ = 0 implies f(x) ≥ f(x0) = 0.

(i) If v1 ≤ 0, then ⟨v, (−1, 0)⟩ = −v1 ≥ 0, and f(−1, 0) = −1 < 0. This is a
contradiction.

(ii) If v1 > 0 and v2 > 0, then
⟨
v,
(
−v2

v1
, 1
)⟩

= −v2 + v2 = 0, and

f

(
−v2
v1

, 1

)
=

1√(
v2

v1

)2
+ 1

− 1 =
v1√

v21 + v22
− 1 < 0.

This is a contradiction.
(iii) If v1 > 0 and v2 ≤ 0, then

⟨
v,
(

v2

v1
,−1

)⟩
= v2 − v2 = 0, and

f

(
v2
v1

,−1

)
=

−1√(
v2

v1

)2
+ 1

− 1 =
−v1√
v21 + v22

− 1 < 0.

This is a contradiction.
Hence, ∂GP f(x0) is empty, that is, 0 /∈ ∂GP f(x0) +NF (x0).

In the following theorem, we introduce characterizations of the solution set for
quasiconvex programming in terms of Greenberg-Pierskalla subdifferential.

Theorem 8 Let f be a usc essentially quasiconvex function, F a nonempty convex
subset of Rn, x̄ ∈ S and x0 ∈ riS. Then, the following sets are equal:

(i) S = {x ∈ F | f(x) = miny∈F f(y)},
(ii) S1 = {x ∈ F | ∃v ∈ ∂GP f(x̄) ∩ ∂GP f(x) s.t. ⟨v, x− x̄⟩ = 0},
(iii) S2 = {x ∈ F | ∃v ∈ ∂GP f(x̄) ∩ ∂GP f(x) s.t. ⟨v, x− x̄⟩ ≤ 0},
(iv) S3 = {x ∈ F | ∂GP f(x0) ⊂ ∂GP f(x), ∃v ∈ ∂GP f(x0) s.t. ⟨v, x− x0⟩ = 0},
(v) S4 = {x ∈ F | ∂GP f(x0) ⊂ ∂GP f(x), ∃v ∈ ∂GP f(x0) s.t. ⟨v, x− x0⟩ ≤ 0},
(vi) S5 = {x ∈ F | ∃v ∈ ∂GP f(x) s.t. ⟨v, x− x̄⟩ = 0},
(vii) S6 = {x ∈ F | ∃v ∈ ∂GP f(x) s.t. ⟨v, x− x̄⟩ ≤ 0}.

Proof It is clear that

S1 ⊂ S2 ⊂ S6, S1 ⊂ S5 ⊂ S6, and S3 ⊂ S4.

We need to show that S6 ⊂ S ⊂ S1 and S4 ⊂ S ⊂ S3.
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Let x ∈ S6. Then there exists v ∈ ∂GP f(x) such that ⟨v, x− x̄⟩ ≤ 0. Since
⟨v, x̄⟩ ≥ ⟨v, x⟩ and v ∈ ∂GP f(x), f(x̄) ≥ f(x). This shows that x ∈ S.

Let x ∈ S and y =
x+ x̄

2
. Since f is quasiconvex and F is convex, y ∈ S.

By Theorem 7, 0 ∈ ∂GP f(y) +NF (y). Hence, there exists v ∈ ∂GP f(y) such that
−v ∈ NF (y). Since −v ∈ NF (y), ⟨v, y − x⟩ ≤ 0 and ⟨v, y − x̄⟩ ≤ 0. We can prove
easily that ⟨v, y⟩ = ⟨v, x⟩ = ⟨v, x̄⟩. Also, since v ∈ ∂GP f(y), for each z ∈ Rn with
⟨v, z⟩ ≥ ⟨v, y⟩,

f(z) ≥ f(y) = f(x) = f(x̄).

Hence, v ∈ ∂GP f(x) ∩ ∂GP f(x̄). This shows that x ∈ S1.
Let x ∈ S4, then ∂GP f(x0) ⊂ ∂GP f(x), and there exists v ∈ ∂GP f(x0) such

that ⟨v, x− x0⟩ ≤ 0. Hence, v ∈ ∂GP f(x), and f(x) ≤ f(x0). This shows that
x ∈ S.

Let x ∈ S. By Theorem 5, ∂GP f(x0) ⊂ ∂GP f(x). Since x0 ∈ riS, z0 = x+(1+
ε)(x0−x) ∈ S for sufficiently small ε > 0. By Theorem 7, 0 ∈ ∂GP f(x0)+NF (x0).
Hence, there exists v ∈ ∂GP f(x0) such that −v ∈ NF (x0). Since x, z0 ∈ F ,
⟨v, x− x0⟩ ≥ 0 and ⟨v, z0 − x0⟩ ≥ 0. This means that ⟨v, x− x0⟩ = 0, and hence
x ∈ S3. This completes the proof.

In the last of this section, we show the following example in order to illustrate
our results.

Example 2 Let F = [0, 1]× [0, 1], and f a real-valued function on R as follows:

f(x1, x2) =

{
x1 x1 ≥ 0,

x2√
x2
1+x2

2

− 1 x1 < 0.

This function coincides the function in Example 1 on R2 \ ({0} × (−∞, 0)). We
can check that F is convex, and f is usc essentially quasiconvex.

Let x̄ = (0, 0). Then, we can easily show that NF (x̄) = {(v1, v2) | v1 ≤ 0, v2 ≤
0}. Let v0 = (1, 0), then for each x ∈ R2 with ⟨v0, x⟩ ≥ ⟨v0, x̄⟩, f(x) = x1 =
⟨v0, x⟩ ≥ ⟨v0, x̄⟩ = 0 = f(x̄). Hence v0 ∈ ∂GP f(x̄), that is,

0 = v0 − v0 ∈ ∂GP f(x̄) +NF (x̄).

By Theorem 7, x̄ is a global minimizer of f in F .
By Theorem 8,

S = S5 = {x ∈ F | ∃v ∈ ∂GP f(x) s.t. ⟨v, x− x̄⟩ = 0}.

Let x ∈ F , then L(f,<, f(x)) = {(y1, y2) | y1 < x1}. This shows that ∂GP f(x) =
{(λ, 0) | λ > 0}. Hence,

S = S5

= {x ∈ F | ∃v ∈ ∂GP f(x) s.t. ⟨v, x− x̄⟩ = 0}
= {x ∈ F | ∃v ∈ {(λ, 0) | λ > 0} s.t. ⟨v, x− x̄⟩ = 0}
= {x ∈ F | ∃λ > 0 s.t. λ(x1 − x̄1) = 0}
= {x ∈ F | x1 = x̄1}
= {0} × [0, 1].

Actually, for each x ∈ S5, f(x) = 0 = f(x0).
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5 Comparisons

In this section, we compare our results with previous ones. At first we show some
of Mangasarian’s characterizations in Theorem 1 as corollaries of Theorem 8.

Corollary 1 Let f be a real-valued convex function on Rn, F a nonempty convex
subset of Rn, and x̄ ∈ S. Assume that infz∈F f(z) > infz∈Rn f(z). Then, the
following sets are equal:

(i) S = {x ∈ F | f(x) = miny∈F f(y)},
(ii) S̄1 = {x ∈ F | ∃v ∈ ∂f(x) s.t. ⟨v, x− x̄⟩ = 0},
(iii) Ŝ1 = {x ∈ F | ∃v ∈ ∂f(x) s.t. ⟨v, x− x̄⟩ ≤ 0}.

Proof Let x ∈ F . Since infz∈F f(z) > infz∈Rn f(z), x is not a global minimizer of
f in Rn. Also since f is a real-valued function, R+(domf + {−x}) = Rn. Hence
by Theorem 3, R++∂f(x) = ∂GP f(x).

By Theorem 8,

S = S5

= {x ∈ F | ∃v ∈ ∂GP f(x) s.t. ⟨v, x− x̄⟩ = 0}
= {x ∈ F | ∃v ∈ ∂f(x),∃r > 0 s.t. ⟨rv, x− x̄⟩ = 0}
= {x ∈ F | ∃v ∈ ∂f(x) s.t. ⟨v, x− x̄⟩ = 0}
= S̄1

The proof of S = S6 = Ŝ1 is similar.

We show (f) and (g) in Theorem 1 as direct consequences of (vi) and (vii) in
Theorem 8. However, (b), (c), (d), and (e) in Theorem 1 are not direct consequences
of our characterizations in Theorem 8. Assume that v ∈ ∂GP f(x̄)∩∂GP f(x), then
there exists v1 ∈ ∂f(x̄), v2 ∈ ∂f(x), and r1, r2 > 0 such that v = r1v1 = r2v2.
Unfortunately, we can not prove r1 = r2 by only our results in general. Hence we
can not show (b) and (c) in Theorem 1 by (ii) and (iii) in Theorem 8. Also, even
if ∂GP f(x0) ⊂ ∂GP f(x), we can not prove ∂f(x0) ⊂ ∂f(x) by only our results.

In [2], Burke and Ferris also introduced characterizations of the solution set for
convex programming. In the following corollary, we show a similar characterization.

Corollary 2 Let f be a usc essentially quasiconvex function, F a nonempty con-
vex subset of Rn, and x̄ ∈ S. Assume that infz∈F f(z) > infz∈Rn f(z). Then,

S = {x ∈ F | ∂GP f(x) ∩ (−NS(x)) = ∂GP f(x̄) ∩ (−NS(x̄))}.

Proof Let x ∈ S. By Theorem 4, ∂GP f(x) ∩ (−NS(x)) = ∂GP f(x̄) ∩ (−NS(x̄)).
Let x ∈ F and assume that ∂GP f(x) ∩ (−NS(x)) = ∂GP f(x̄) ∩ (−NS(x̄)).

By Theorem 7, 0 ∈ ∂GP f(x̄) + NF (x̄) ⊂ ∂GP f(x̄) + NS(x̄). This shows that
0 ∈ ∂GP f(x)+NS(x). Hence, there exists v ∈ ∂f(x) such that v ∈ −NS(x). Since
x̄ ∈ S and v ∈ −NS(x), ⟨v, x̄⟩ ≥ ⟨v, x⟩. Also since v ∈ ∂f(x), f(x̄) ≥ f(x), that is,
x ∈ S.

In general, the characterization in [2] is not a direct consequence of Corollary 2.
Actually, it is difficult to show the invariance property of ∂f(x) ∩ (−NS(x)) by
using the invariance property of ∂GP f(x) ∩ (−NS(x)).
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Finally, we compare our results with Penot’s characterization in Theorem 2.
Theorem 2 (i) is similar to Theorem 7. In Theorem 2 (i), essential quasiconvexity is
not necessary, but x ∈ F is not a local minimizer of f in Rn. On the other hand, in
Theorem 7, x ∈ F can be a local minimizer as long as f is essentially quasiconvex.
It is clear that Theorem 2 (i) is not a direct consequence of Theorem 7. However,
as seen in the proof of Theorem 7, we can prove Theorem 7 by using Theorem 2 (i).
In the proof of Theorem 2 (i), the separation theorem between a convex set F and
an open convex set L(f,<, f(x)) plays a central role. It should be appreciated that
Theorem 7 can be shown directly by the similar separation theorem in the proof
of Theorem 2 (i).

Theorem 2 (ii) is also a necessary and sufficient optimality condition for qua-
siconvex programming. We can prove that the condition in Theorem 7 (ii) is a
necessary optimality condition by using the equation (1) and Theorem 2 (ii).

The invariance properties of infradifferential and lower subdifferential are proved
by using the inequality which also appears in the subdifferential. The invariance
property of Greenberg-Pierskalla subdifferential have not been investigated yet
in [20] and other papers as far as we know. In Theorem 6, we show an invariance
property of Greenberg-Pierskalla subdifferential.

6 Conclusion

In this paper, we study characterizations of the solution set for quasiconvex pro-
gramming in terms of Greenberg-Pierskalla subdifferential. At first, we show that
∂GP f(x) ∩ (−NS(x)) are constant on x ∈ S. By using this results, we show an
invariance property of Greenberg-Pierskalla subdifferential on riS. We introduce
a necessary and sufficient optimality condition by Greenberg-Pierskalla subdiffer-
ential. As a consequence, we show characterizations of the solution set for qua-
siconvex programming in terms of Greenberg-Pierskalla subdifferential. Also, we
compare our results with Mangasarian’s characterization, Burke and Ferris’ char-
acterization, and Penot’s characterization. Especially, we prove some of Mangasar-
ian’s characterizations as corollaries of our results.
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