1-harmonic functions on a network

アクセス数 : 1263
ダウンロード数 : 62

今月のアクセス数 : 104
今月のダウンロード数 : 0
File
c0020048001.pdf 117 KB エンバーゴ : 2015-03-30
Title
1-harmonic functions on a network
Creator
Kurata Hisayasu
Yamasaki Maretsugu
Source Title
島根大学総合理工学研究科紀要. シリーズB
Volume 48
Start Page 1
End Page 14
Journal Identifire
ISSN 13427121
Descriptions
A minimizer of the Dirichlet norm of order 1 is called a 1-harmonic function. The aim of this paper is a research of properties of 1-harmonic functions on a network. First we consider the 1-Dirichlet space and show that every network is of 1-hyperbolic type and that the ideal boundary coincides with the 1-harmonic boundary. Next we introduce the notion of 1-harmonic functions and that of strongly 1-harmonic functions. We discuss the Dirichlet problem and the maximum principle with respect to (strongly) 1-harmonic functions.
Subjects
discrete potential theory ( Other)
1-harmonic function ( Other)
strongly 1-harmonic function ( Other)
Language
eng
Resource Type departmental bulletin paper
Publisher
島根大学総合理工学研究科
Date of Issued 2015-03
Publish Type Version of Record
Access Rights open access
Relation
[NCID] AA12638295