ファイル情報(添付) | |
タイトル |
差集合のハウスドルフ次元についての注意
|
タイトル |
Notes on Fractional Dimensions of Difference Sets
|
タイトル 読み |
サシュウゴウ ノ ハウスドルフ ジゲン ニ ツイテ ノ チュウイ
|
著者 | |
収録物名 |
島根大学教育学部紀要. 自然科学
Memoirs of the Faculty of Education, Shimane University. Natural science
|
巻 | 13 |
開始ページ | 1 |
終了ページ | 9 |
収録物識別子 |
ISSN 05869943
|
内容記述 |
その他
Under the continuum hypothesis W. Sierpinski [7] proved that a set E which possesses 'the property C' is of measure zero with respect to any Hausdorff measure but E-E=R^1. In his proof we can see that a difference set A-B is closely related to the orthogonal projection of the product set A×B in the xy-plane to the line y= -x. In [8] D. J. Ward defined an n-difference set D^r(E) of a non empty set E⊂R^1 and showed that dim D (E)≦min {nα, n-1} under the conditions that the set E is an α-set and it has positive lower density with respect to the α-dimensional Hausdorff measure at every point in it.
In this iemark we shall estimate the lower and upper bounds of fractional dimensions of difference sets and show that the upper bound is sharp. In §1, following [4] we shall define a perfect set of translation and under some condition we shall evaluate the Hausdorff measure of it in §2. In §3 we shall discuss the fractional dimensions of difference sets. |
言語 |
英語
|
資源タイプ | 紀要論文 |
出版者 |
島根大学教育学部
The Faculty of Education Shimane University
|
発行日 | 1979-12-25 |
アクセス権 | オープンアクセス |
関連情報 |
[NCID] AN00107941
|