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A Remark on Fractional Dimensinns of Difference Sets

Kaoru HATANO*

Introduction

Under the continuum hypothesis W. Sierpinski [7] proved that a set £ which
possesses ‘the property C’ is of measure zero with respect to any Hausdorff
measure but E—E=R' In his proof we can see that a difference set A—B is
closely related to the orthogonal projection of the product set AXB in the
zxy-plane to the line y=—z. In [8] D. J. Ward defined an n-difference set D"(E)
of a non empty set £ R' and showed that dim D (E) << min {na, n—1} under
the conditions that the set E is an «-set and it has positive lower density with
respect to the «-dimensional Hausdorff measure at every point in it.

In this remark we shall estimate the lower and upper bounds of fractional
dimensions of difference sets and show that the upper bound is sharp.

In 31, following [4] we shall define a perfect set of translation and under some
condition we shall evaluate the Hausdorff measure of it in 82. In §3 we shall
discuss the fractional dimensions of difference sets.

81. Definitions

Let R' (# = 1) be the n-dimensional Euclidean space with points x=(x,, zs,...,
z.). By an n-dimensional open cube (resp. closed cube) in R", we mean the set
of points x=(x,, x, ..., x,) satisfying the inequalities :

a, < x; < a;+d (resp. a;<x; < a;+d) for i=1, 2,..., n, where a; (i=1, 2,...,
n) are any numbers and d > 0. We call d the length of the side, or simply the
side, of the open (or closed) cube.

Let ¥ be the family of non empty open sets in R" which is determined by the
following properties :

(i) any n-dimensional open cube belongs to ¥,

(ii) if w, and w, belong to U, then so does w; U w.,

(iii) if @ is an element of 2, then there existva finite number of 7-dimensional

open cubes I, (v =1, 2,..., N) such that w= L_JI,.

Let £ be a subset in R". For any number a, 0 <a <n, we define the a-
dimensional Hausdorff outer measure of E by
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2 Fractional Dimensions of Difference Sets
A(E)=lim {inf }'d%},
p—+0

where the infimum is taken over all coverings of E by at most a countable
number of open cubes with sides d, < p.

The fractional dimension dim E of a set E is defined by
dim E=inf {a; A(E)=0}.

A set Eis an «-set if it is measurable with respect to the «-dimensional
Hausdorff outer measure and 0 < A,(E) < c:. Note that the fractional dimension
of an a-set is a.

We denote by c¢(x, ) the closed ball in R* with center x and radius 7.

The upper and lower circular densities of a set E in R" at a point z are
defined by

D“(E, x):.@ 2= ALENc(z, r)) and

D(E, x)=lim 2~ “A(ENc(x, 7)).

Let 6 be a number such that 0 <0< x. We denote by proj,E the linear set
obtained by the orthogonal projection of a plane set E onto the line y cos (0+
7/2)=z sin (0+7/2).

Let A and B be non empty subsets in R'. The difference set A and B is
defined by the set of all numbers a—& with a = A and & & B, denoted by A—
B. Then we can see that
(1) proj.(AxB)={((a—b)/2, —(a—b)/2); at= A, b = B} and
2) A(A—B)=2""4,(proj.,(AXB)) for any positive a.

From (1) it follows easily that the difference set of Cantor’s ternary set is equal
to [—1, 1]. In the following the equality (2) will be often used.

We shall define a perfect set of translation (cf. [4]). Let » =2 be an integer
and 7, 7,..., 77, be numbers such that

0=n<n<...<7 <L

Let & be a number satisfying the following inequalities :

0<E, E< =1y E< =1y, £ 771y E<1-7.

We remove intervals from a closed interval [a, 6] (¢ <{d) so that » disjoint
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closed intervals [a+(b—a)7;, a+(b—a) (7,+E)] (=1, 2,..., v) remain. We call
this operation on the closed interval [a, &] the dissection of type (v, 71, 7s,...,
s &)

Let {v,}s: be a sequence of integers, {(75.1, 7g2re--» Na.s, )}iz, be a sequence of
sets of numbers and {£,}:>, be a sequence of positive numbers. Suppose a system

Hrdramn, {Mgas Dg.0s . ..,ﬁq_,q)}gll, {&, 1] satisfies the following condition :

Dq; 29 0 g 77q.1 < 7]q.2 <- . -< 7]q.vq < 1 and
(3) 0 < éq’ ‘:;_q < Ny Tg150 « Sq < 7q, vy G, =12

éq g 1'—'7741‘-/(1 (q 2 1)-

At the first step, we operate the dissection of type (i, 71, Z12seees 71ap E1)
on the interval [0, 1] and obtain v, closed intervals with side £,. Next we operate
the dissection of type (v, 7.1, Msase s osllany, C2) on each interval and obtain vy,
closed intervals with length &,&,.. We continue this process. At the g¢th step, we
have vv,...v, closed intervals with length £,&,...5,. Let E, be the union of
these intervals. We define E'V= ﬂE It is called the one-dimensional perfect set
of translation constructed by theqs;stem oo, e 70 .. s My, Wi, A&
We call the product set EP=FEY<XEYX,,,XE" of n one-d1mens1onal perfect
set of translation of E® the n-dimensional set of translation constructed by
the system [{v,}il, (o1 702 oovy 7o )b, AEJ]. We can see that E'=

li_o] E XE,X...XE, where E,XE,X...XE, is a product set in R" and consists of
E;llpz. ..b,)" n-dimensional cubes with side £,&,...5,. We call E,XE,X...XE,
the gth approximation of E“’ (n>1).

M vo=0, 70a="M, 79:=7s..., 4., =7 and &,=& (7 =1), then we call the n-
dimensional perfect set of translation constructed by the system [{v.}:Z1, {(74.1
Tazs oo s 77(,.yq)}§":1, {€Je-] the n-dimensional homogenous perfect set of type (v,
Ty Taseosllsy €.

I 7,,=0, 72= 022, 70.0=20+0) A 10 o5 T, =(0y—1) (A +0,)A¢%1 and
E, =244, (¢ =1), where Ao=1, then it is easy to see that the n-dimensional
perfect set of translation constructed by the system [{r.iz1, {(My1 Zg2sees ﬁq,uq)}
i€ 1] is equal to the n-dimensional symmetric generalized Cantor set con-
structed by the system [/=1, {v,};2:, {A}:2]. We refer to [2] for the definition of
symmetric generalized Cantor set comnstructed by the system [/, {k}i:, {AJizi]. In
the following /=1 will be omitted.



4 Fractional Dimensions of Difference Sets

$2. Evaluation of Hausdorff measures of perfect sets of translation

LEMMA 1. ([6]) Let F be a compact set in R" and let N be the f amily defined in
Ql. Assume that there exists a non-negative set function O on U satisfying the

Sollowing conditions -

1) f co=igw;, 0w, A (=1, 2,..., N), then ®(w) gi@(wi),

(2) if w & U contains F, then O(w) = b, where b is 310="1w positive constant,

(3) there exist positive constants a and dy such that if 1 is any n-dimensional
open cube with side d <d,, then ®(I) < ad".

Then A, (F)=b/a.

Given a system [{v.} e, {(Dy1s7a ..., Naw)ba=r, A&+ satisfying (3) in §1, we
write

5q+1=<Uq+1—1)—l(él§2~ . -Eq'_—vq+1€1€2. . .Eqﬂ)a

6q+1,1=§1‘§2. . fq?]q+1,1,

Our10=E:E0. o . EMurs=Tgsri—Ei0),

5q+1,uq+1=§1$z. . .éq(ﬁqﬂ,uqﬂ“‘“774+1,»u+1-1"‘€q+1)
and

5q+1,uq+1+1=$1'§z. . .éq(l”“ﬂlﬁ-l,»q“”“éqﬂ) (¢ =0),
where &,=1. Let m, be the number of integers j which satisfy 9, ;< d,, provided
the set of such integers j is not empty, and m,=0 if it is empty (g =1). By a
method similar to that in the proof of Theorem 1 in [3] we obtain

THEOREM 1. Let E be n-dimensional perfect set of translation constructed by
the system [{vtae, {(Tans Taase s Naw )} 1=15 {E o] satisfying condition (3) in §1.

If the sequence {m,};=, is bounded, then we have

at im(ivs. . 1) (E:6s. . . E)"E ALE)<Im (1125, . . 1) (E&s. . &) (0 <a<ln),

(—co oo

where a is a positive constant.
PROOF. From the definition of the Hausdorff outer measure the right-hand
inequality is obvious. Therefore it is sufficient to prove the left-hand inequality

in the case A=lim (V,...1)"(E:E,...E)*>0. Let B be an arbitrary number

g—rco

such that 0 << B<{A. Then there exists a positive integer g, such that (vi1,...
v)"(61&s. . &) > B for all ¢ =¢q,. We choose sequences {(io}5=,, and {0g}¢Zq,+1
such that (vi,...0)" ;=B for ¢ =¢ and veuftent (Ve —1)01=u, for ¢ = qu.
Clearly 1, << &:55...&, for ¢ = ¢, It is easy to see that {Ny(w)usiz,, is a de-

creasing sequence for every w = U, where Ny (w) is the number of n-dimensional
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closed cubes in the gth approximation of E“ which meet w. ,

Now we define a set function @ on U by @(w)=lim N (w)u;. We can easily
check that @ satisfies conditions (1) and (2) of Lemmz:_mln with F=E™ and b=B.
We set do=E&.e. .. &1 and a=2"(M+3)"+2", where M=sqt§1) m,. Let I be any

open cube with side d<<d,. Then there exist uniquely determined positive integers

¢ (=gq+1) and j (1 <j<r,,—1) such that £&,...5.<d<E6E....5, and
]'6152. . .éq+1+(j"—]-)5q+l< d g (J+ ]-) ‘51&2. . -$q+1+j6q+1'

Since E®™ is symmetric, we have
Ny D=A2(M+j+2)}".
If j=1, then
O(D={2M~+3)} "ty a(&:&s. . . Er) <lad".

If 2 g] g Vogt1 — 1’ then (j"/a '—J) / (J_' 1) g (”grl—yqﬂ)/()/qﬂ—‘l) = 6;+1//J~q+1~ It
follows that j"u5s <A{jtlo+1+(—1)0s4:1°. On the other hand,

Ittt =100 (thgs1+ D)
=2BY(&:&s. . . E) vk
=2/t 2vih&i&s. &,
L2H(E:Es. . . EqirtOus)

<44EEs. . Eont (=104} <4d.

Hence

OU)=A{2(M+j+2)} " 1151 2" {(M~+2)"+ 7"} i1
§{2Zn(M+ 3)11,’_'_ 24)7}da:ada.

Thus @ satisfies condition (3) in Lemma 1. By Lemma 1 we obtain A (E“)=>B/
a. Since B is an arbitrary number less than A, we have
(lnl Hﬂ (2/1)/2. . .)/q)”(él§2o . .éq)ag/lu(E(n)>-
q—roo

This is the desired inequality.

Counting N,.;(I) more precisely in the above proof, we obtain

COROLLARY 1. Let E™ be the n-dimensional homogeneous perfect set of type (v,
Ty Thseees Ty &) and take a=—n log v/log &. Then (2v)"= A(E™)< 1. Thus
the set E™ is an Q-set.

COROLLARY 2. Let E™ be the n-dimensional generalized Cantor set constructed by
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the system [{k;}:2,, (A}, Then we have

27 lim (kiks. . k)" = A(E™) L lim (Riks. . k)" A (0 < a0 < ).

q—co q—reo

COROLLARY 3. Under the condition of the theorem, we obtain

dim E(")ZEIE log (Vyvs.. .g)"/ —log (Sléz- . S&q)

q—rea

PROOF. For brevity we set a,=lim log (yiv,...0,)"/—log (£:&,...&). If B>

q—oo

@, then there exists a subsequnce {g;};, such that @ > log (.. ..vq)"/ —log

(&6, &) for every j=1. Thus 1> (bws.. we)"(E&s. . &) for every ;. It
follows from the theorem that /;(E“) <1 and hence dim Eé”)g (3. Since (G is
an arbitrary number such that 3 >, we have dim E™<q,.

On the other hand, if 0 < a < a,, then there exists a positive integer g, such
that a <log (vivs...rq)"/—log(£:5,...&,) for all ¢=¢g,. Thus 1< (yws...u)"
(£1&s.. &) for all ¢ =g¢,. It follows from the theorem that /A, (E™)>0 and
hence dim E = . It implies that dim E‘>> g, Hence we have the corollary.

If the sequence {m,};>; is not bounded, we can not obtain the result of the
theorem.

EXAMPLE. Let @ be a number such that 0<a <n. Let E“ be the n-
dimensional perfect set of translation constructed by the system [{v,}:21, {7,
Daas e os Taw)ta=rs A&7l which satisfies 13_13, ve=00, & = u,"", Qu,+1) E,<1
and 7,:=0, 7,.=2&,, 7,.=4&,..., 77q,vq=2)zq§q (g=1). Then E™ is covered by
(V1s. . vg-1)" closed cubes with side (2v,+1) (6:5,...5,). Thus A, (E™) <lim

g—reo

Wivse e g {20, +1) £:&,.. .5 =2 lim vy "=0. However it is easy to check

g—rco

that (byLs. . 0)" (648, .. E)*=1 and m,=v, (¢ =1).
83. Hausdorff dimension of difference sets

LEMMA 2. ([11, [5]) Let o and B be positive numbers such that 0 < o, 5 <1.
Let A and B be subsets in R' such that 0 < A,(A) oo and 0 < A;(B) oo, If
at every point of B the lower circular density is positive, then the fractional
dimension of the product set AXB is a+ 3 and 0 < Aus(AXB).

LEMMA 3. Let E™ be the n-dimensional homogeneous perfect set of type (v, 7.,
veus Dy &) and take a=—n log v/log &. Then

A (B 1Y elz, 7)) =0~ "*Qu)"Er for all x in E™ and all r, 0 <r<1.

PROOF. If = in E®, then there exists a decreasing sequence {I}:=, of closed

intervals such that (I[,={x}, I, is contained in the ¢th approximation of E“’ and
g=1
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the side of I, is &% For any number », 0 < <1, we choose the smallest integer
¢, such that c(x, ) D L. Tt follows that r<{ n**&17, So we have, using Corollary
1 to Theorem 1,
A“ (E(") r‘l C(x, r))/ra 2 n-u/2/1a(E('1) |’] Iqo)/g(qo—l)a — 71—0:/2_/10( (E("))p—‘llllog-(qo—l)a
=n"(20) & .
Hence Lemma 3 is proved.

Remark. By modifying the above proof we have : Let E be the n-dimensional
symmetric generalized Cantor set constructed by the system [{%,};Z:, {1} =] which
satisfies (kik,...%k)"25=1 (g = 1). If the sequnece {k,};, is bounded, then D“'(E,
x) >0 for all x in E. If it is not bounded, then D“(E, z)=0 for all « in E.

THEOREM 2. Let A and B be non empty subsets in R* such that dim A=q, dim
B=f and dim AXB=qa+p3, 0<a, f<1.

Then

max {a, A} <dim (A—B) <min {1, a+G}

and the upper bound can be attained.

PROOF. Since A, (A—B)=2"/, (proj.(AXB)) for any positive number 7, it is
easily seen that dim (A—B) < min {1, a+G}.

In case B=(log k/log n) a, a+ /3 <1 for some integers n and ¢, 2 <n <%, we
shall construct sets attain the upper bound. Set r=(1—#%n'"Y%)/(nk—1). Then the
number 7 is positive.

Let 74, Zaseees Ny s Zaseves 7iy & and & be numbers such that 7,=(j4—1)
(Vo tr) (=1, 2,...,n), E=n"", E=(—1) k™ +7r) (j=1,..., k) and &=k
=¢&. Let A be the homogeneous perfect set of type (1, 71, 7s..., 7.y &) and A,
be the ¢gth approximation of A. Similarly B be the homogeneous perfect set of
type (&, 71, 7ye.es i &) and B, be the gth approximation of B. Then Lemma 3
and Corollary 1 to Theorem 1 show that 0 < A, (4) <eo, 0 < 4, (B) < co, D@
(A, a) >0 for any a in A and D® (B, 4) >0 for any b in B. Hence Lemma 2
implies that 0 < A4, (AXB). According to n Y*=k " the set AXB is covered by
(nk)* closed cubes with side 7. It follows that A, ;(AXB) <lim (k) %*¥/a=
1. Therefore A,.s(AXB)< o2, Hence it is sufficient to prove EZt proj..(A X B)
has positive (a-+(3)-dimensional Hausdorff measure.

By the inequlity (1—»""*) (n™"*+n*+ .. .)+r > n""", there exists the smallest
positive integer ¢, such that (1—n7Y") (Vo n %+ . +5n" 9 )4 > n~V* Since
r > n"Ye proj..(A, X B,) consists of nk disjoint closed intervals with length 27/
(nY*+n7%/*) on the line y=—x. Similarly being shrinked with the same ratio

nM% proj.. (Agr1X By 11) consists of (nk)® disjoint closed intervals with 27"% !«
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(n™""+n7%") on the line y=—zx. It follows that proj., (A\<B)—ﬂ C,, where C,
is the union of (#k)" disjoint closed intervals on the line y—lﬁx with length
2= @ V(e =1 0") By a method similar to that in the proof of Theorem 1,
we obtain /.. (proj., (AxB)) > 0. Thus we obtain A, (A—B) > 0.

For given «&, (3 such that 0 <{a < /<1 and a+@ <1 we take an increasing

sequence {} ;1 which satisfies 0 <<, << a, lim a,=a, a,=p log n,/log , for
gen

some integers 7, and k,, 2 <n, =%, This is possible because the set {log 7/log
k; n, k integers 2 <n <%} is dense in [0, 1]. Then as constructed above, there
exist sets A, C [0, 1] and B, C [0, 1] for each ¢ such that 0 < A, (Aq) < co, 0L
A(By) < e, 0 < s, +ig,(Aq B )< c< and D?(B,, &) >0 for every b in B,. Set A

_UA and B—UB Then A— B—*U (A4,—B,). By Lemma 2, dim A,XB,=a,+

q=1 7a’

3 <0z+[3’ for any ¢, ¢ = 1. Hence A..s(4,—B,)=0 for any ¢, ¢ = 1. Therefore

Aasi(A—=B) <) Ao s (A,— B,)=0.

q,q’=1

Moreover, A, s (A—B) = Ao +(A,—B,) >0 for each ¢, so that dim (A—B)= a+
3. Thus these sets A and B are required ones.

For any a, (3 such that 0 <Ca<3<1and 1< a+R, we take a positive
number oy =1—/. For a, and [/ we can construct sets A, and B which dim A4,
=, dim B=f, dim A XB=a,+/3=1 and dim (4,—B)=1. Let A, be the
one-dimensional generalized Cantor set constructed by the system [{%}:,, {} o],
where 4,=2 and A,=2""“(¢g=>1). Set A=A, JA,. Then these sets A and B have
the required properties. Thus we have proved the theorem.

REMARK. In case S=a(log k/log n), 0 < a+ @ < 1,where % and n are integers
2<n=<kand % is a multiple of #, we can construct sets which attain the lower
bound of the theorem.
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