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A Remark on Fractional Dimensi~ns of Difference Sets 

Kaoru HATANO* 

Introduction 

Under the continuum hypothesis W. Sierpinski [7] proved that a set E which 

possesses 'the property C' is of measure zero with respect to any Hausdorff 

measure but E-E R1. In his proof we can see that a difference set A-L; is 

closely related to the orthogonal projection of the product set A )..' E: in the 

xy-plane to the line y -x. In [8] D. J. Ward defined an /1-difference set D" (E) 

of a non empty set E r_ Rl and showed that dim D (E) < min {n,c~, n-l} under 

the conditions that the set E is an c~-set and it has positive lower density with 

respect to the c~-dimensional Hausdorff measure at every point in it. 

In this iemark we shall estimate the lower and upper bounds of fractional 

dimensions of difference sets and show that the upper bound is sharp 

In S1, following [4] we shall define a perfect set of translation and under some 

condition we shall eva'luate the Hausdorff measure 0L it in ~~_~~2. In ~~~3 we shall 

discuss the fractional dimensions of difference sets 

S1. Definitions 

Let R" (n > l) be the n-dimensional Euclidean space with points x-(xl' x2,' ' ' , 

x,,). By an n-dimensional open cube (resp. closed cube) in R", we mean the set 

of points x-(xi, x2, ' ' ' , x.,) satisfying the inequalities 

ai < xi < a;+d (resp. ai<xi /____ ai+d) for i-1, 2,. . ., n, where ai (i l, 2,. . ., 

n) are any numbers and d > o. We call d the length of the side, or simply the 

side, of the open (or closed) cube. 

Let ~~ be the family 0L non empty open sets in R" which is determined by the 

following properties : 

( i ) any n-dimensional open cube belongs to ~1, 

(ii) if cvl and aJ2 belong to ~1, then so does col LJ co2, 

(iii) if cv is an element of ~X, then there exist a finite number of ll-dimensronal 
'~' 

open cubes I. (~/ l, 2,. . . , N) such that co- UI.. 
.=1 

Let E be a subset in R". For any number c~, O < o! < n, we define the c~-

dimensiona] Hausdorff outer measure of E by 
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2 Fractional Dimensions of Difference Sets 

A.(E) Iim {inf LVld~} , 
P- -h o 

where the Infimum rs taken over all covenngs of E by at most a countable 

number of open cubes with sides d. < p 

The fractional dimerLSion dim E of a set E is defined by 

dim E-inf {c~ ; A.(E)-O}. 

A set E is an c~-set if it is measurable with respect to the a-dimensional 

Hausdorff outer measure and O < /1.(E) < c ['. Note that the fractional dimension 

of an c~-set is a. 

We denote by c(~; 7 ) the closed ball m R" wath center x and radius r. 

The upper and lower circular densities of a set E in R" at a point x are 

defined by 

D(')(E x)=1im 2~"r~"A.(Enc(x, r)) and 
"-o 

D(')(E x)-lim 2~"r jl (Enc(x r)) 
"- n 

Let O be a number such that O C O < 7r. We denote by projcE the linear set 

obtained by the orthogonal projection of a plane set E onto the line y cos (0+ 

7r/2) x sin (0+~/2). 

Let A and B be non empty subsets in R1. The difference set A and B is 

defined by the set of all numbers a-b with a E A and b E B, denoted by A 

~. Then we can see that 

(1) proj./4(AXE:) {((a-b)/2, (a-b)/2) ; a E A, b E B} and 

(2) /1.(A-B) 2"!2/1.(Proj./4(A X 1~)) for any positive (~ 

From (1) it follows easily that the difference set of Cantor's ternary set is equal 

to [-1, I]. In the following the equality (2) will be often used 

We shall define a perfect set of translation (cf. [4]). Let 2) ~~~ 2 be an integer 

and ~l' ~2,' ' " ~, be numbers such that 

O -- ~1 < ~2<. . .< ~. /¥ l. ~ 
Let ~ be a number satisfying the following inequalities 

0<~ ~~<~ ~1' ~<~3 ~2""' ~<~.-~.-1, ~--~1 ~ 

We remove intervals from a closed interval [a, b] (a < b) so that ~) disjoint 
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closed intervals [a+(b-a)~j, a+(b a) (~ +~)] (j 1 2 ~)) remain. We call 

,...' 
this operation on the closed mterval [a b] the drssection of type (~), ~l, ~' 

",. . ., 

~., ~~'). 

Let {h) }q"=1 be a sequence of integers, {(~q.1, ~,1'2" ' " ~'l'",1 )}q~=1 be a sequence of 

sets of numbers and {~q}q"=1 be a sequence of positive numbers. Suppose a system 

L{2) }* {(~q 1, 77,1 2" ' "~,1'"~/)}'*=1=1' {~q}."=1=1] satisfies the following condition 
'1 q=1' ' ' 

~/ > 2 O -¥~ ~q I < ~q,2 <. < ~q,"q < I and 
.. 

(3) O < ~q, ~q < ~q,2 ~q,1, . . . , ,1'" -I~ ~,/ < ~ ~
 q , ".1 "I 

~q < l-~,1'",1 (q > 1). 

At the first step, we operate the dissection of type (~/1' ~1,1, ~l,2;"" ~l"I9 ~l) 

on the interval [O, I] and obtain ~/1 closed intervals with side ~1' Next we operate 

the dissection of type (~'2' 772,1' ~2,2""'~2,'~' ~2) on each interval and obtain ~)1~)2 

closed mtervals wrth length ~~ ~ We contmue this process. At the qth step, we 

have ~/12)2"'~/'1 closed mtervals wrth length ~=1~. ~ Let E,1 be the umon of 

these mtervals We defme EC1) _ n E, . It is called the one-dimensional perfect set 
'/=1 

of translation constructed by the system [{~, }~ {(~,1 l' ~l 2' " 7J,] ",/)},/-1, {~ }-- l 
'I 'i=1' ' ' ' ' , .- '1 <1-1 

We call the product set Ec") E(1) X E(1) X . . . )< E(1) of n one-dimensional perfect 

set of translatron of E(1) the n drmenslonal set of translatron constructed by 

the system [{~) }= {(~q 1, ~~1 2' " ' ~,1 ",1)}~l' {~,lf,1=1]' We can see that EC")-1= 
'I "I=1' ' ' 

f~E,1)x(E,1'/" ' ' ' XE,1' where E XE X X E rs a product set m R" and consists of '
/
 

(~) h) ~/ )" n-dimensional cubes with ' . We call E,1 XE,/ X . . . XE,1 side ~ ~2"'~ l 2"' *1 
'
/
 

the qth approximation of E(") (n > l) 

If ~/q ~/' ~q,1 ~1, ~,1 " ~2 ~= (q > 1), then we call the n-., ~q," -~. and ~ '
1
 '.. "

I
 

dimensional perfect set of translation constructed by the system [{~)'1}q'~=1' {(~q,1, 

{ ~q J ~q,2' ' ' " ~,/," )}= q=1] the n-dimensional homogenous perfect set of type ~2/' '1 '!=1' 

~1, ~2" 77 ~) 
If ~q,1 O, ~q 2-(~ +0* )~-1 ~,! 2(~~1+0*~1)~qil, . . . , ~,1'",1 (~)q l) (~.1+0*,/)~q-_,_11 and 

' q q '/-1' '2 
~&~1 ~q_l~,1 (q ~~./' l) where ~ l - , then it is easy to see that the 71-dimensronal 

perfect set of translation constructed by the system [ {~l'lJ ,'*=1=1' {(~,1'1' ~q.2" ' " ~q.",1)} 

<;'= l,{~q},'"=1=1] is equal to the "I-dimensional symmetric generalized Cantor set con-

structed by the system [1 1 {~,,/}.'-=q l, {~,l}"'=7 J We refer to [2] for the definition of 

symmetnc generalized Cantor set constructed by the system [1 {kq},"=7 1' {~,l} '<-=1=J ' In 

the following 1 1 will be omitted. 
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b~'2 . Evaluation of Hausdorff naeasures of perfect sets of translation 

LEMMA I . ( [6i) Let F be a cornpa:ct set ilc R" and let ~r be the fa'mily def'ined in 

S1. Assu.me that there exists a 'ron-uegative set function G~ on ~.DJ satisfyillg the 

followin,g conditions : 

(1) tf (,J Ua),, (J t h)1 (1 1 2,. . ., N), then G~(a)) __--==--/,__==~~L~~)((L)i), 

j=1 
i=1 

(2) if CJ E h~1 contains F, then ~~((v) .-~¥ b , whel~e b is some positive constant, 

(3) the/~e exist positive constants a alid do such t/'1at if I 'is all.y n-di'nensional 

open cube wlth side d '~~_,.=__¥_ do' th.en G~(1) ¥~~ ad". 

Then A~ (F) ~-~ b/a. 

Given a system t{2),1}q~'=1' {(~ ~ ~q "~1)}q~'=1' {~ }= I satisfying (3) in S1, we 
. '/,19 '/'2" ' " "! "I=1 

write 

~ Oq+1 (hlq+1 1) (~l~2"'~ 1)q+1~l~ ~ ~ 2' * ' ~ q+11' 

, ~ Oq+1 1 ~ . . . ~ * 12 ~ q q+1,1' 
~q+1,2 ~l~2 ~ (~q+1 " ~q+1 1 ~</+1)' 

~ ~: ~~ ~: (77 - ~q + 1) q+1 'q+1~ ~q+1 ' l~ "I+1"q+1 (> I~ 2' ' ' ~ q~'/ , 
' q~-1 

an d 

~~l~2 ' ' ' ~~1(1 ~,1~ I 'q+1 * Oq+1"q+1+1 ~~,1+1) (q > o), 
where ~=0 l. Let /nq be the number of integers j which satrsfy O*,1 j < O~,1' Provided 

the set of such integers j is not empty, and 771~/~O if it is empty (q > 1). By a 

method similar to that in the proof of Theorem I in [3] we obtain 

THEOREM I . Let E(")' be n-di,nension,al perfect set of trJ:nslation constructed by 

the system [{), }~ {(~,1 1' ~<1 2?' ' . . , ~q," )}= {~ }~ l] satlsfymg condetron (3) In S1 
'/ "I=1' , , "/ "/=1' q 

If the sequence { m } " is bounded then we have 
q q=1 

a~1 Iim(h/l~)2' ' ' ~)q)"' (~~l~2' " ~,1)"~-~~~-__'- jl.(E('))¥-~lim(~/12/2 " ' ~;q)"(~1~2' ' ' ~=q)" (O <c~<n), 

'/ ~ = '1~~ 

7vhere a is a positive con.stant. 

PROOF' From the definition of the Hausdorff outer measure the right-hand 

inequality is obvious. Therefore it is sufficient to prove the left-hand inequality 

m the case A lim (~'l~;2 ~) )"(~l~~2 ~~1) > o Let B be an arbitrary number 
'1~= 

such that O < E} < A. Then there exists a positive integer qo Such that (~/1~'2 ' ' ' 

~)'1)"'(~l~2' ' ' We choose sequences {/~ }q"'=q and {0+'} = ~q)" > L: for all q ~¥--- qo 
o q q="l0+1 

such that (2)12)2' ' '~/q)"/1~-B for q /~ qo and l)~/+1/~L~1+1+(~)q+1~1)~;+1 /~q for q > q ~. 

Clearly /~C,1 < ~ Cd~ . . .~ for q > qo' It is easy to see that {N((L,)/~q},'~=,1 qo rs a de 

rs the number of n-dimensional creasing sequence for every co E ~~{ where Nq(cv) ' 
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closed cubes in the qth approxrmatlon of E(";' which meet GJ 

Now we define a set functron lim N (a))/~',;. We can easily ' ~ on h.~r by (p((JJ) j_= 
(,, ) 

check that G) satisfies conditrons (1) and (2) of Lemma I wlth F E and b ~. 

We set d ~I~2 ~,10+1 and a~22"(M+3) +24" where M-sup r'~q' Let I be any 
"I;~1 

open cube with side d--do' Then there exist uniquely determined positrve mtegers ~~ 

q (>q +1) and j (1 -'-~~-j--~ ~)q+1 1) such that ~ ~2"'~ < d < ~I~2"'~,/ and '1+1 

j~l~2 " ~q+1+ (j-1)~q+1< d --~ (j+ l) ~I~. . . . ~ +jO*q+1 
* "I+1 

Since E(") is symmetric, we have 

N.1+1(1 ) </__ {2(M+ j+ 2)} " . 

If j-1, then 

~D(1)'< {2(M+ 3)} "/~~+1< a(~I~2 " ' ~ )"<ad 
'1+1 

If 2 < j ~-~ 2/~1+1 1 then (J"/' J) / (J 1) < (h)~/+"I ~/q+1)1(~) -1) - ~;+J/~~/+1' It 
q+1 

follows that j"/~~+1 ¥~ {j/~q+1+(j 1)~q+1 } On the other hand 

jlJ;q+1 + ( j - 1)O*~+1< j(~q+1 + O*;+1) 

<2j~v'(~1~2 ' ~ ) ~"'/" ' -l 
. . q 'q.*1 

-2j~)~1 /~ <2j~)q~1~1~2 ' ' ' ~,1 
"I+1 q 

<2j(~l~2 ' ' ' ~q~-1+ ~q+1) 

<4{j~l~2 ' ' ' ~q+1+ (J l)~q+1} <4d 

Hence 

~(1 ) < {2(M+ j + 2)} '"/L~+ l<22"' { (M+ 2)' + j" } /~~+ l 

'-- {22~(M+ 3)" + 24"} d ad ~ 
Thus ~) satisfies condition (3) in Lemma 1. By Lemma I we obtain A.(E('))~¥E:/ 

a . Since L; is an arbitrary number less than A, we have 

a~1 Iim (2)12)2" '~)q)"(~l~=2' ' '~q)"<A.(E(~)). 

'1~= 

This is the desired inequality. 

Counting Nq+1(1) more precisely in the above proof, we obtain 

COROLLARY 1. Let E(~) be the n-dimensional homo*"eneous pe7fect set oj type (~), 

~., ~) and take a -n log ~)/log ~. Then (2~))~"~ /1.(E("))< l. Thu's 771, ~2" "' 

the set E('*) is an C~-set. 

COROLLARY 2. Let E(") be the n-dimensional generalized Cantor set constructed by 



6 Fractional Dimensions of Difference Sets 

th.e s'vstem [ {k } = f~ }q_l] Then we have 
* q "I=1' q - ' 

2 4" lim (klk. k )"~~<Cjl.(E(~))< Iim (klk2 ' ' 'kq)"~,"7 (O < a < n). 

COROLLARY 3. Under th.e condition, of the theorem, we obtain 

dim E("') Iim log (~)1~)2' ' ' ~)q)"'/-log (~I~2' ' ' ~q)' 

PROOF. For brevity we set ao~lim log (1)lh)2' ' '2)q)"/ Iog (~l~2' ' '~q). ' If ~ > 

q~ = 

c~o' then there exists a subsequnce {q,j}J'~=1 such that ~ > Iog (2)l~)2"'h/qj)"'/-log 

(~I~2' ' '~~') for every j > 1. Thus I > (2)12)2' ' 'h/q,)"(~~l~2' ' '~ )p for every j. It 

follows from the theorem that Ap (E(")) _¥_~~--~_ I and hence dim E(~)¥_~ ~. Since ~ is 

an arbitrary number such that ~ > c~o' we have dim E(")'~-_ao 

On the other hand, if O < o! < ao' then there exists a positive integer qo Such 

that o! < Iog (2)1~/' ~/ )"/ Iog (~ ~:2"'~q) for all q>qo' Thus I < (2)12)2"'~/q)' 

(~I~2 ' ' ' ~q)" for all q > qo' It follows from the theorem that A~ (E(~)) > o and 

hence dim E(") > oc. It implies that dim E(")> c~o' Hence we have the corollary. 

If the sequence {Inq}q=1 is not bounded, we can not obtain the result of the 

theorem . 

EXAMPLE. Let c~ be a number such that O < a < n. Let E(~) be the n-
dimensional perfect set of translation constructed by the system [ {~)q}q=1, {(V,1'1' 

~ ~q,"q)},1=1' {~~1}q"=J which satisfies lim ~/ '~'o 2) ~"/', (2~)q+1) ~~1 < 1 , ~q q 'I'2" ' " '
1
 

and ~q,1- , O ~q 2-2~q, ~q 3 4~ ~q,"q-2~lq~q (q > l). Then E(") is covered by 
, , "I" ' " (2)12). ~)q 1) closed cubes wrth slde (2h/ + 1) (~l~2 ~ ) Thus A. (E(~)) < Iim 

(2)1~)2" '~)q_1)"' {(2~) + l) ~l~2 ~ } 2 lim ~)" " O However rt rs easy to check 

that (~)12). ~),1) (~ ~ ~ ) I and mq-~/q (q > l). 

S3. Hausdorff dimension of difference sets 

LEMMA 2 ([1] [5]) Let a and ~ be posltlve numbers such that O < c~ ~ < l. 

Let A and ~; be subsets in Rl such that O < A. (A) < o-._' and O < Ap (~) < (>+a. If 

at every point of B the lo~ver circular density is positive, then the fractional 

dimension of the prode.tct set A X B is a + ~ and O < A.+p(A X B). 

LEMMA 3. Let E(~) be the n-dimensional homogeneous perfect set of type (2), ~1' 

. . . , ~., ~) and take c~--n log 2)/log ~. Then 

/1. (E(") f~ c(x, r)) > n~"/2(2~/) ~"r" for all x m E(~) and all r O < r < l. 

PROOF. If x in E("), then there exists a decreasing sequence {Iq},/"=1 of closed 

intervals such that n lq- {x} , Iq is contained in the qth approximation of E( ") and 
q=1 
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the side of I,1 is ~q. For any number 1-, O < r < 1; we choose the smallest integer 

qo Such that c(x, 1-) [1) Iqo' It follows that 1~ < nl/2~g~1. So we have, using Corollary 

1 to Theorem l, 

n "I2jl (E("))~)-' o~-(q -1)' A. (E(') n c(x, r))/r" > n~"/2A.(E(") I~ lqo)/~(q0~1)' - * ' " "I o 
> n~"/2 (2~,)-"~". 

Hence Lemma 3 is proved 

Remark. By modifying the above proof we have : Let E be the n-dimensional 

symmetnc generalized Cantor set constructed by the system [ {kq}q'"=1, {~,/} q'"=1] which 

satisfies (klk2 k )"~" I (q > 1) If the sequnece {kq}q=1 is bounded, then D("(E, 

x) > o for all x in E. If it is not bounded, then D(')(E, x) O for all x in E 

THEOREM 2. Let A and L; be uon elnpty subsets in R1 such that dim A-c~, dim 

B-~ and dim AXB c~+~, 0<c~, ~< 1. 
Then 

max {c~, ~} -~-- dim (A-1~) ¥.~~ min {1, c~+~} 

and the uppe/~ bound can be attained. 

PROOF. Since Ar (A-E:)-2rl2Ar (Proj./4(A X L:)) for any positive number T, it is 

easily seen that dim (A-B) iC min {1, a +p} 

In case ~-(log kllog n) a, ,clc+~ < I for some integers n and k, 2 ･-~ n < k, we 

shall construct sets attain the upper bound. Set r (1-knl-1/~)/(nk-1). Then the 

number 7- is positive. 

. . . , ' ' . . . , ~f,, ~ and ~/ be numbers such that ~j-(jk-1) Let ~1? ~29 ~^,, ~l' ~2' 

(n~v.+r) (j 1, 2,..., n); ~-n~1/'. ~;･ (j-1) (k-v'+r) (j 1,..., k) and ~/ k-1/p 

-~. Let A be the homogeneous perfect set of type (n, ~l' ~2" ' " ~"' ~) and Aq 

be the qth approximation of A. Similarly B be the homogeneous perfect set of 

type (k, ~:, ~;,. . . , ~h=, ~-F/) and ~q be the qth approximation of E;. Then Lemma 3 

and Corollary I to Theorem I show that O < A. (A) < <)･~', O < Ap (B) < c>O, D(') 

(A, a) > o for any a in A and D(fi) (1~, b) > o for any b in ~;. Hence Lemma 2 

implies that O < A.+p(A X ~:). According to n~1/' k-1/~ the set A X B is covered by 

(nk)q closed cubes with side n~q/'. It follows that A.+p(A X E:) < Iim (nk)qn~q('+~v. 

q~ l Therefore jl.+e(A X B) < <-･･_ c). Hence it is sufficient to prove th=at proj./4(A X ~) 

has positive (c~ + ~)-dimensional Hausdorff measure. 

By the inequlity (l-n~v') (n,~1!'+n~2/'+ . . . ) +r > n~1/', there exists the smallest 

positive integer qo Such that (1 n~1/~) (n~v.+n~2/'+ . . . +n~(q ~1)/') +r > n~1/'. Since 

r > n~qol" proj./4(Aqo X E:qo) consists of nk disjoint closed intervals with length 2-1/2 

(n~l/'+n~qo/') on the line y ~ -x. Similarly being shrinked with the same ratio 

n l/' proj'/4 (Aq +1XBq0+1) consists of (nk)2 disjoint closed intervals with 2-1/2 -1/' 
n 
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(n.~1/'+..-"I /~~ on the line y x It follows that proj'j4 (A X E;) h C~1' where C 
'" o / 

"]=1 q is the union of (1lk)'! disjoint closed intervals on the line y -x with length 

2 -1/2n~(~/-1)/~(n~]/'+n.~q /~). By a method similar to that in the proof of Theorem 1, 

we obtain /1~+,3 (Proj./4 (A .X B)) > o. Thus we obtain A.+p (A B) > o. 

For given o!, ~ such that O < CY -( p < I and a+~ ~ I we take an increasing 

sequence {a,l} ~/=1 which satisfies O < (~~[ < a, Iim ct.1-c~, c~~1 ~ Iog nqllog kq for 

some integers n~/ and kq, 2 _< n,1 ---'~'- k,1' This is possible because the set {log n/]og 

k ; n, k integers 2 <C n. ¥_~ k} is dense in [O, 1]. Then as constructed above, there 

exist sets A~/ C [O, 1] and B~1 L [O, 1] for each q such that O < A~q(A~1) < ~.~'._.', 0< 

Afi(~,1) < c'<~', O /¥ A. +p(A~1-E:~1)/¥ c'._' and D '3) (B b) > o for every b in Bq Set A 
q, '

1
 

qUIAq and B- U~q. Then A JB U (A~1-B,7')' By Lemma 2, dim A~/XB . a,1+ 

/ ']"I ~ < c~+~ for any q q > I Hence A.H 9(A~1 B~/')=0 for any q, q/ > 1. Therefore 

/1._1-p(A- B) <L~A.+fi (A~1 -E:q.) = O. 

q,q'=1 

Moreover, /1~~1+p (A-~) > A.q+f(/1~1-1~q) > o for each q, so that dim (A-E;)- a+ 

~. Thus these sets A and 1~ are required ones. 

For any c~, ~ such that O < cic ~ ~ < I and I < ct+e, we take a positive 

number cl!o I ~. For C~O and p we can construct sets Al and B which dim Al 

o!o' dim B p, dim AIX~ c~0+~ I and dim (Al~~)-1. Let A2 be the 
one-dimensional generalized Cantor set constructed by the system [{kq}q=1, {~~/}q=1]' 

where kq-2 and ~q-2-"]/' (q >･ 1). Set A AIUA2' Then these sets A and B have 

the required properties. Thus we have proved the theorem 

REMARK. In case ~ ce(10g kllog 71). O < a+~ < 1,where k and n are integers 

2 < n 'C k and k is a multip]e of /1, we can construct sets which attain the lower 

bound of the theorem . 
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