ファイル | |
言語 |
英語
|
著者 |
木村 真琴
|
内容記述(抄録等) | In this note, we will study about the space of oriented geodesics in hyperbolic spaces H^n. It is well-known that the space of oriented geodesics (i.e., oriented great circles) in spheres S^n is identified with oriented real 2-plane Grassmannian G^2(R^<n+1>) and complex quadric Q^n. We will show that the space of oriented geodesics in H^n is also given similarly by using Lorentz numbers. Oriented real 2-plane Grassmannian plays important roles among differential geometry of submanifolds. For example, let f be an immersion from a Riemann surface ∑ to the Euclidean space R^<n+1>. Then the Gauss map γ from ∑ to the Grassmannian G^2(R^<n+1>) of oriented 2-plane in R^<n+1> of f is anti-holomorphic (resp. holomorphic) if and only if the immersion f is minimal (resp. totally umbilical). Here we will remark that similar results valid for timelike surfaces in Lorentz space R^<n+1> without proof.
|
掲載誌名 |
島根大学総合理工学部紀要. シリーズB
|
巻 | 36
|
開始ページ | 61
|
終了ページ | 67
|
ISSN | 13427121
|
発行日 | 2003-03
|
NCID | AA11157123
|
出版者 | 島根大学総合理工学部
|
資料タイプ |
紀要論文
|
ファイル形式 |
PDF
|
著者版/出版社版 |
出版社版
|
部局 |
(旧組織)大学院総合理工学研究科
|
他の一覧 |