SPACE OF GEODESICS IN HYPERBOLIC SPACES AND LORENTZ NUMBERS

MAKOTO KIMURA

(Received: January 31, 2003)

In this note, we will study about the space of oriented geodesics in hyperbolic spaces \mathbb{H}^{n}. It is well-known that the space of oriented geodesics (i.e., oriented great circles) in spheres \mathbb{S}^{n} is identified with oriented real 2-plane Grassmannian $\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)$ and complex quadric Q^{n}. We will show that the space of oriented geodesics in \mathbb{H}^{n} is also given similarly by using Lorentz numbers. Oriented real 2-plane Grassmannian plays important roles among differential geometry of submanifolds. For example, let f be an immersion from a Riemann surface Σ to the Euclidean space \mathbb{R}^{n+1}. Then the Gauss map γ from Σ to the Grassmannian $\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)$ of oriented 2-plane in \mathbb{R}^{n+1} of f is anti-holomorphic (resp. holomorphic) if and only if the immersion f is minimal (resp. totally umbilical). Here we will remark that similar results valid for timelike surfaces in Lorentz space \mathbb{R}_{1}^{n+1} without proof.

1. Complex numbers and Lorentz numbers

According to [8] (section 4), we review the complex numbers \mathbb{C} and the Lorentz numbers \mathbb{L}. Let $\mathbb{R}(2,0)$ be the vector space \mathbb{R}^{2} with an inner product $\varepsilon_{2,0}(x, y)=$ $x_{1} y_{1}+x_{2} y_{2}$. The square norm associated with $\varepsilon_{2,0}$ is defined by $\|x\|=\varepsilon_{2,0}(x, x)$. Then the complex numbers \mathbb{C} are defined to be $\mathbb{R}(2,0)$ with the multiplication, given by $(a, b)(c, d):=(a c-b d, a d+b c)$. Let $1:=(1,0)$ and $i:=(0,1)$, so that $(a, b)=a+b i$ and $i^{2}=-1$. Conjugation is defined by $\bar{z}=a-i b$ for $z=a+i b$. Note that $\overline{z w}=\bar{z} \bar{w}, z \bar{z}=\|z\|$, and hence $\|z w\|=\|z\|\|w\|$. If $z \neq 0$, then $z^{-1}=\bar{z} /\|z\|$, so that \mathbb{C} is a (commutative) field.

Let $e^{i \theta}=\cos \theta+i \sin \theta$ denote a point on the unit circle and note that $M_{e^{i \theta}}$, multiplication by $e^{i \theta}$, is an orthogonal transformation since $\left\|e^{i \theta}\right\|=1$. As a 2×2 real matrix,

$$
M_{e^{i \theta}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right),
$$

so that $M_{e^{i \theta}} \in S O(2)$. Since $M_{e^{i \theta} e^{i \psi}}=M_{e^{i(\theta+\psi)}}$, the map $\theta \mapsto M_{e^{i \theta}}$ induces the group isomorphism, $\mathbb{R} / 2 \pi \mathbb{Z} \cong S O(2)$.

[^0]Let $\mathbb{R}(1,1)$ be the vector space \mathbb{R}^{2} with an inner product $\varepsilon_{1,1}(x, y)=x_{1} y_{1}-x_{2} y_{2}$. The square norm associated with $\varepsilon_{1,1}$ is defined by $\|x\|=\varepsilon_{1,1}(x, x)$. Then the Lorentz numbers \mathbb{L} are defined to be $\mathbb{R}(1,1)$ with the multiplication, given by $(a, b)(c, d):=(a c+b d, a d+b c)$. Let $1:=(1,0)$ and $\tau:=(0,1)$, so that $(a, b)=a+b \tau$ and $\tau^{2}=1$. Conjugation is defined by $\bar{z}=a-b \tau$ for $z=a+b \tau$. Note that $\overline{z w}=\bar{z} \bar{w}, z \bar{z}=\|z\|$, and hence $\|z w\|=\|z\|\|w\|$. Thus if $\|z\| \neq 0$ (z non null), then $z^{-1}=\bar{z} /\|z\|$ exists, while for $\|z\|=0$ (z null) z can not have an inverse.

Let $e^{\tau \theta}=\cosh \theta+\tau \sinh \theta$ (calculate the formal power series for $e^{\tau \theta}$ to see that this definition is appropriate). Note that $M_{e^{\tau \theta}}$, multiplication by $e^{i \theta}$, is an orthogonal transformation since $\left\|e^{\tau \theta}\right\|=1$. As a 2×2 real matrix,

$$
M_{e^{\tau \theta}}=\left(\begin{array}{cc}
\cosh \theta & \sinh \theta \\
\sinh \theta & \cosh \theta
\end{array}\right),
$$

so that $\operatorname{det} M_{e^{\tau \theta}}=1$. Define a timelike vector $z=a+b \tau$ to be future timelike if $b>0$. Since $M_{e^{\tau \theta}}=\sinh \theta+\tau \cosh \theta$, multiplication by $e^{\tau \theta}$ preserves the futurelike time cone. Thus, $M_{e^{\tau \theta}} \in S O^{+}(1,1)$ (the connected component of the identity of the Lorentz group $O(1,1)$). In fact, since $M_{e^{\tau \theta} e^{\tau \psi}}=M_{e^{\tau(\theta+\psi)}}$, the map $\theta \mapsto M_{e^{\tau \theta}}$ determines the group isomorphism, $\mathbb{R} \cong S O^{+}(1,1)$.

2. Space of oriented geodesics in spheres

In this section we recall (cf. [9] and [11]) that space of oriented geodesics (i.e., oriented great circles) in the unit sphere \mathbb{S}^{n} in \mathbb{R}^{n+1} is identified with complex quadric Q^{n-1} in complex projective space $\mathbb{C P}^{n}$ and oriented 2-plane Grassmannian $\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)$. Let \mathbb{R}^{n+1} be the Euclidean $(n+1)$-space, that is the set of all $(n+1)$ tuples $\mathbf{p}=\left(p_{1}, \cdots, p_{n+1}\right)$, with the dot product $\mathbf{p} \cdot \mathbf{q}=\sum p_{j} q_{j}$. Then $\mathbb{S}^{n}=\{\mathbf{p} \in$ $\left.\mathbb{R}^{n+1} \mid \mathbf{p} \cdot \mathbf{p}=1\right\}$ is the unit sphere. The geodesic γ in \mathbb{S}^{n} of unit speed with $\gamma(0)=\mathbf{p}$ and $\gamma^{\prime}(0)=\mathbf{x}(\|\mathbf{x}\|=1)$ is written as $\gamma(\theta)=\cos \theta \mathbf{p}+\sin \theta \mathbf{x}$.

Let

$$
\begin{equation*}
V_{2}^{n+1}=\left\{\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \mid \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}=\delta_{\alpha \beta}(\alpha, \beta=1,2)\right\} \tag{1}
\end{equation*}
$$

be a Stiefel manifold of orthonormal 2 -vectors in \mathbb{R}^{n+1}. As a homogeneous space, $V_{2}^{n+1}=S O(n+1) / S O(n-1)$ and $\operatorname{dim}_{\mathbb{R}} V_{2}^{n+1}=2 n-1$. We consider the action of $S O(2)$ on V_{2}^{n+1} as

$$
\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{2}\\
\sin \theta & \cos \theta
\end{array}\right)=\left(\cos \theta \mathbf{e}_{1}+\sin \theta \mathbf{e}_{2},-\sin \theta \mathbf{e}_{1}+\cos \theta \mathbf{e}_{2}\right) .
$$

Then each orbit $\left\{\left(\cos \theta \mathbf{e}_{1}+\sin \theta \mathbf{e}_{2},-\sin \theta \mathbf{e}_{1}+\cos \theta \mathbf{e}_{2}\right) \mid \theta \in \mathbb{R}\right\}$ of the action (2) is identified with a pair $\left(\gamma, \gamma^{\prime}\right)$ of unit speed geodesic γ on \mathbb{S}^{n} and its unit tangent vector field γ^{\prime} with $\gamma(0)=\mathbf{e}_{1}$ and $\gamma^{\prime}(0)=\mathbf{e}_{2}$. Note that orbit space of the action (2) is nothing but the oriented 2-plane Grassmannian

$$
\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)=\left\{\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\} \mid \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta}=\delta_{\alpha \beta}(\alpha, \beta=1,2)\right\} .
$$

Then V_{2}^{n+1} is a principal fiber bundle over $\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)$ with structure group \mathbb{S}^{1} and projection map $\pi: V_{2}^{n+1} \rightarrow \widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)$ defined by

$$
\pi\left(\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)\right)=\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\} .
$$

The tangent space $T_{\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)} V_{2}^{n+1}$ is

$$
\mathbb{R}\left(-\mathbf{e}_{2}, \mathbf{e}_{1}\right) \oplus\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \mid \mathbf{x}_{1}, \mathbf{x}_{2} \perp \operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}\right\}
$$

The inner product on $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ defined by

$$
\begin{aligned}
& \left\langle\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right),\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)\right\rangle=\left\langle\mathbf{x}_{1}, \mathbf{y}_{1}\right\rangle+\left\langle\mathbf{x}_{2}, \mathbf{y}_{2}\right\rangle \\
& \text { for } \quad\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right),\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}
\end{aligned}
$$

induces a Riemannian metric \widetilde{g} on V_{2}^{n+1}. Since \widetilde{g} on V_{2}^{n+1} is invariant by the structure group, we may define a Riemannian metric g on $\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)$ such that π is a Riemannian submersion.

The distribution given by

$$
\begin{equation*}
T_{\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)}^{\prime}\left(V_{2}^{n+1}\right)=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in T_{\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)}\left(V_{2}^{n+1}\right) \mid \mathbf{x}_{1}, \mathbf{x}_{2} \perp \operatorname{span}\left\{\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)\right\}\right\} \tag{3}
\end{equation*}
$$

defines a connection in the principal fiber bundle $V_{2}^{n+1}\left(\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right), S^{1}\right)$, because $T_{\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)}^{\prime}$ is complementary to the subspace $\mathbb{R}\left(-\mathbf{e}_{2}, \mathbf{e}_{1}\right)$ tangent to the fiber through $\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$, and invariant under the S^{1}-action. The natural projection $\pi: V_{2}^{n+1} \rightarrow$ $\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)$ induces a linear isomorphism of $T_{\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)}^{\prime}\left(V_{2}^{n+1}\right)$ onto $T_{p}\left(\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)\right)$, where $\pi\left(\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)\right)=p$. The complex structure \widetilde{J} on $T_{\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)}^{\prime}\left(V_{2}^{n+1}\right)$ defined by

$$
\begin{equation*}
\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mapsto\left(-\mathrm{x}_{2}, \mathrm{x}_{1}\right) \tag{4}
\end{equation*}
$$

induces a canonical complex structure J on $\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)$ through $d \pi$. Then it can be seen that

$$
J^{2}=-1, \quad\left\langle J X_{1}, X_{2}\right\rangle+\left\langle X_{1}, J X_{2}\right\rangle=0, \quad \nabla J=0
$$

where ∇ denotes the Levi-Civita connection of $\left(\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right), g\right)$, so $\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)$ is a Kähler manifold.

Let $\mathbb{C}^{n+1}=\left\{\mathbf{z}=\mathbf{x}+i \mathbf{y} \mid \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n+1}\right\}$ be the complex Euclidean space, and define the dot product on \mathbb{C}^{n+1} as

$$
(\mathbf{x}+i \mathbf{y}) \cdot(\mathbf{u}+i \mathbf{v})=(\mathbf{x} \cdot \mathbf{u}-\mathbf{y} \cdot \mathbf{v})+i(\mathbf{x} \cdot \mathbf{v}+\mathbf{y} \cdot \mathbf{u})
$$

where $\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^{n+1}$. The submanifold $V_{\mathbb{C}}^{2 n-1}$ of \mathbb{C}^{n+1} is defined by

$$
\begin{equation*}
V_{\mathbb{C}}^{2 n-1}=\left\{\mathbf{z} \in \mathbb{C}^{n+1} \mid \mathbf{z} \cdot \overline{\mathbf{z}}=2, \mathbf{z} \cdot \mathbf{z}=0\right\} \tag{5}
\end{equation*}
$$

where $\overline{\mathbf{z}}=\mathbf{x}-i \mathbf{y}$ for $\mathbf{z}=\mathbf{x}+i \mathbf{y} \in \mathbb{C}^{n+1}$. Then the map

$$
V_{2}^{n+1} \ni\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \mapsto \mathbf{e}_{1}+i \mathbf{e}_{2} \in V_{\mathbb{C}}^{2 n-1}
$$

is a diffeomorphism. Moreover $V_{\mathbb{C}}^{2 n-1}$ is a submanifold of $\mathbb{S}^{2 n+1}(\sqrt{2})$ with radius $\sqrt{2}$ and is invariant under the action of unit complex numbers $\left\{e^{i \theta}\right\}$ on $\mathbb{S}^{2 n+1}(\sqrt{2})$ defined by $\mathbf{z} \mapsto e^{i \theta} \mathbf{z}$. Hence if we denote $\pi: \mathbb{S}^{2 n+1}(\sqrt{2}) \rightarrow \mathbb{C P}^{n}$ the Hopf fibration, then $\mathbb{Q}^{n-1}:=\pi\left(V_{\mathbb{C}}^{2 n-1}\right)$ is nothing but the complex quadric in $\mathbb{C P}^{n}$ defined by the
quadratic equation $z_{0}^{2}+\cdots+z_{n}^{2}=0$, and is diffeomorphic to $\widetilde{G}_{2}\left(\mathbb{R}^{n+1}\right)$ such that the following diagram is commutative:

3. Space of geodesics in hyperbolic spaces

In this section, we will see that space of oriented geodesics in the hyperbolic space \mathbb{H}^{n} is identified with some indefinite Grassmannian and given by using Lorentz numbers. Let \mathbb{R}_{1}^{n+1} be the Minkowski $(n+1)$-space with the scalar product $p \cdot q=$ $-p_{0} q_{0}+\sum_{j=1}^{n} p_{j} q_{j}$ of signature $(1, n)$. Then

$$
\mathbb{H}^{n}=\left\{p=\left(p_{0}, p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{1}^{n+1} \mid p \cdot p=-1, p_{0}>0\right\}
$$

is the hyperbolic space with constant sectional curvature -1 . The tangent space $T_{p}\left(\mathbb{H}^{n}\right)$ at $p \in \mathbb{H}^{n}$ is

$$
T_{p} \mathbb{H}^{n}=\left\{X \in \mathbb{R}_{1}^{n+1} \mid X \cdot p=0\right\} .
$$

Then the geodesic γ of unit speed in \mathbb{H}^{n} with $\gamma(0)=p \in \mathbb{H}^{n}$ and $\gamma^{\prime}(0)=X \in$ $T_{\mathrm{e}}\left(\mathbb{H}^{n}\right)(\|X\|=1)$ is written as

$$
\gamma(t)=\cosh t p+\sinh t X
$$

Let

$$
\begin{gathered}
V_{1,1}^{n+1}=\left\{(\mathbf{e}, \mathbf{f}) \mid \mathbf{e}=\left(e_{0}, e_{1}, \ldots, e_{n}\right), \mathbf{f} \in \mathbb{R}_{1}^{n+1}, e_{0}>0,\right. \\
\mathbf{e} \cdot \mathbf{e}=-1, \mathbf{f} \cdot \mathbf{f}=1, \mathbf{e} \cdot \mathbf{f}=0\} .
\end{gathered}
$$

Note that as a homogeneous space, $V_{1,1}^{n+1}=S O^{+}(1, n) / S O(n-1)$ and $\operatorname{dim}_{\mathbb{R}} V_{1,1}^{n+1}=$ $2 n-1$, where $S O^{+}(1, n)$ is the proper Lorentz group (cf. [12]). We consider the action of $S O^{+}(1,1)$ on $V_{1,1}^{n+1}$ as

$$
(\mathbf{e}, \mathbf{f})\left(\begin{array}{cc}
\cosh \theta & \sinh \theta \tag{6}\\
\sinh \theta & \cosh \theta
\end{array}\right)=(\cosh \theta \mathbf{e}+\sinh \theta \mathbf{f}, \sinh \theta \mathbf{e}+\cosh \theta \mathbf{f}) .
$$

Then each orbit $\{(\cosh \theta \mathbf{e}+\sinh \theta \mathbf{f}, \sinh \theta \mathbf{e}+\cosh \theta \mathbf{f}) \mid \theta \in \mathbb{R}\}$ of the action (6) is identified with a pair $\left(\gamma, \gamma^{\prime}\right)$ of unit speed geodesic γ on \mathbb{H}^{n} and its unit tangent vector field γ^{\prime} with $\gamma(0)=\mathbf{e}$ and $\gamma^{\prime}(0)=\mathbf{f}$. The orbit space of the above action is identified with the space of oriented geodesics in \mathbb{H}^{n}. We also identify $[(\mathbf{e}, \mathbf{f})] \in$ $V_{1,1}^{n+1} / S O^{+}(1,1)$ with the oriented 2-plane with a signature $(1,1)$ in \mathbb{R}_{1}^{n+1} spanned by eand \mathbf{f}. Hence the space of oriented geodesics in \mathbb{H}^{n} is the oriented indefinite 2-plane Grassmannian $\widetilde{G}_{1,1}^{+}\left(\mathbb{R}_{1}^{n+1}\right)$.

Let $\pi: V_{1,1}^{n+1} \rightarrow G_{1,1}^{+}(1, n)$ be the natural projection. Tangent space of $V_{1,1}^{n+1}$ at the point (\mathbf{e}, \mathbf{f}) is

$$
T_{(\mathbf{e}, \mathbf{f})} V_{1,1}^{n+1}=\left\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in \mathbb{R}_{1}^{n+1}, \mathbf{x} \cdot \mathbf{e}=\mathbf{y} \cdot \mathbf{f}=\mathbf{x} \cdot \mathbf{f}+\mathbf{e} \cdot \mathbf{y}=0\right\} .
$$

Put

$$
T_{(\mathbf{e}, \mathbf{f})}^{\prime}=\left\{(\mathbf{x}, \mathbf{y}) \in T_{(\mathbf{e}, \mathbf{f})} V_{1,1}^{n+1} \mid \mathbf{x} \cdot \mathbf{f}=\mathbf{y} \cdot \mathbf{e}\right\} .
$$

Then the distribution $T_{(\mathbf{e}, \mathbf{f})}^{\prime}$ gives a connection on the principal fiber bundle $V_{1,1}^{n+1}\left(G_{1,1}^{+}(1, n), S O^{+}(1,1)\right)$, and the projection π induces the linear isomorphism $\pi_{*}: T_{(\mathbf{e}, \mathbf{f})}^{\prime} \rightarrow T_{\pi(\mathbf{e}, \mathbf{f})} G_{1,1}^{+}(1, n)$. For tangent vectors X_{1}, X_{2} at $p \in G_{1,1}^{+}(1, n)$ and their horizontal lifts $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right),\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) \in T_{(\mathbf{e}, \mathbf{f})} V_{1,1}^{n+1}$ with $\pi(\mathbf{e}, \mathbf{f})=p$, we put

$$
\begin{equation*}
\left\langle X_{1}, X_{2}\right\rangle=-\mathbf{x}_{1} \cdot \mathbf{x}_{2}+\mathbf{y}_{1} \cdot \mathbf{y}_{2} \tag{7}
\end{equation*}
$$

Then \langle,$\rangle gives a semi-Riemannian metric g$ of signature $(n-1, n-1)$ on $G_{1,1}^{+}(1, n)$. Note that these indefinite Grassmannian and semi-Riemannian metric are constructed by Ejiri [7].

Let $P: T_{p} G_{1,1}^{+}(1, n) \rightarrow T_{p} G_{1,1}^{+}(1, n)$ be the linear endomorphism defined by

$$
\begin{gather*}
P \pi_{*}(\mathbf{x}, \mathbf{y})=\pi_{*}(\mathbf{y}, \mathbf{x}) \tag{8}\\
(\mathbf{x}, \mathbf{y}) \in T_{(\mathbf{e}, \mathbf{f})}^{\prime}, \quad \pi(\mathbf{e}, \mathbf{f})=p
\end{gather*}
$$

Then

$$
\begin{gather*}
P^{2}=1 \tag{9}\\
\operatorname{dim}_{\mathbb{R}}\{X \mid P X= \pm X\}=\operatorname{dim}_{\mathbb{R}} M / 2 \tag{10}\\
\left\langle P X_{1}, X_{2}\right\rangle+\left\langle X_{1}, P X_{2}\right\rangle=0 \tag{11}\\
\nabla P=0 \tag{12}
\end{gather*}
$$

where ∇ denotes the Levi-Civita connection of $\left(G_{1,1}^{+}(1, n), g\right)$.
Definition 3.1. [4, 10] A tensor field P of type $(1,1)$ on a differentiable manifold M is called almost product structure (resp. almost para-complex structure) if (9) (resp. $(9,10)$) valid. A tensor field P of type $(1,1)$ on a semi-Riemannian manifold ($M,\langle\rangle,, \nabla$) is called almost para-Hermitian structure (resp. para-Kähler structure) if $(9,10,11)$ (resp. $(9,10,11,12))$ hold.
Note that on a para-Kähler manifold $(M, P,\langle\rangle$,$) , a 2-form defined by \omega(X, Y)=$ $\langle P X, Y\rangle$ gives a symplectic form. $\left(G_{1,1}^{+}(1, n), P,\langle\rangle,\right)$ is a para-Hermitian symmetric space $[4,10]$, especially is a symplectic affine symmetric space.
Proposition 3.2. For an oriented 2-dimensional semi-Riemannian manifold ($\left.\Sigma_{1}^{2}, \cdot\right)$ with signature $(1,1)$, there is a canonical para-Kähler structure P on Σ_{1}^{2}.

In fact, let (u, v) be an isothermal coordinate, which is compatible with the orientation of Σ_{1}^{2}, i.e., $\partial_{u} \cdot \partial_{u}+\partial_{v} \cdot \partial_{v}=\partial_{u} \cdot \partial_{v}=0$ and $\partial_{u} \cdot \partial_{u}<0$. Then the canonical para-Kähler structure on Σ_{1}^{2} is defined by

$$
\begin{equation*}
P \partial_{u}=\partial_{v}, \quad P \partial_{v}=\partial_{u} \tag{13}
\end{equation*}
$$

Let $\mathbb{L}^{n+1}=\left\{\mathbf{z}=\mathbf{x}+\tau \mathbf{y} \mid \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n+1}\right\}$ be the space of Lorentz numbers, and define the dot product on \mathbb{L}^{n+1} as

$$
(\mathbf{x}+\tau \mathbf{y}) \cdot(\mathbf{u}+\tau \mathbf{v})=(\mathbf{x} \cdot \mathbf{u}+\mathbf{y} \cdot \mathbf{v})+\tau(\mathbf{x} \cdot \mathbf{v}+\mathbf{y} \cdot \mathbf{u})
$$

where $\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^{n+1}$. Then \mathbb{L}^{n+1} is naturally identified with the semi-Euclidean space $\mathbb{R}_{n+1}^{2 n+2}$ (cf. [12], pp.55) with the scalar product

$$
\langle\mathbf{x}+\tau \mathbf{y}, \mathbf{u}+\tau \mathbf{v}\rangle=\operatorname{Re}((\mathbf{x}+\tau \mathbf{y}) \cdot(\mathbf{u}-\tau \mathbf{v}))
$$

The submanifold $V_{\mathbb{L}}^{2 n-1}$ of \mathbb{L}^{n+1} is defined by

$$
\begin{equation*}
V_{\mathbb{L}}^{2 n-1}=\left\{\mathbf{z} \in \mathbb{L}^{n+1} \mid \mathbf{z} \cdot \overline{\mathbf{z}}=-2, \mathbf{z} \cdot \mathbf{z}=0\right\}, \tag{14}
\end{equation*}
$$

where $\overline{\mathbf{z}}=\mathbf{x}-\tau \mathbf{y}$ for $\mathbf{z}=\mathbf{x}+\tau \mathbf{y} \in \mathbb{L}^{n+1}$. Then the map

$$
V_{1,1}^{n+1} \ni(\mathbf{e}, \mathbf{f}) \mapsto \mathbf{e}+\tau \mathbf{f} \in V_{\mathbb{L}}^{2 n-1}
$$

is a diffeomorphism. Moreover $V_{\mathbb{L}}^{2 n-1}$ is a submanifold of the pseudohyperbolic space $\mathbb{H}_{n}^{2 n+1}(\sqrt{2})$ (cf. [12], pp.110) with radius $\sqrt{2}$ and is invariant under the action of unit Lorentz numbers $\left\{e^{\tau \theta}\right\}$ on $\mathbb{H}_{n}^{2 n+1}(\sqrt{2})$ defined by $\mathbf{z} \mapsto e^{\tau \theta} \mathbf{z}$. From these facts, we may consider the space of oriented geodesics in \mathbb{H}^{n} as "Lorentz quadric".

4. Gauss maps for timelike surfaces in the Lorentz spaces

Let $\varphi: \Sigma_{1}^{2} \rightarrow \mathbb{R}_{1}^{n+1}$ be an immersion from an oriented timelike surface Σ_{1}^{2} to the Lorentz space \mathbb{R}_{1}^{n+1}. Then its Gauss map τ is defined as

$$
\tau: \Sigma_{1}^{2} \rightarrow G_{1,1}^{+}(1, n), \quad \tau(p)=\varphi_{*}\left(T_{p} \Sigma_{1}^{2}\right)
$$

Proposition 4.1. (i) τ is conformal $\Leftrightarrow \varphi$ is pseudo umbilical.
(ii) τ is harmonic \Leftrightarrow mean curvature vector of φ is parallel with respect to the normal connection.

With respect to the almost product structure $P($ resp. $\bar{P})$ on $\Sigma_{1}^{2}\left(\right.$ resp. $\left.G_{1,1}^{+}(1, n)\right)$ defined by (13) (resp. (8)), the following hold:
Proposition 4.2. (i) $\tau_{*} \circ P=\bar{P} \circ \tau_{*} \Leftrightarrow$ the mean curvature vector of φ vanishes.
(ii) $\tau_{*} \circ P=-\bar{P} \circ \tau_{*} \Leftrightarrow \varphi$ is totally umbilical.

References

[1] R. L. Bryant, A duality theorem for Willmore surfaces, J. Diff. Geom. 20 (1984), 23-53.
[2] R. L. Bryant, Bochner-Kähler metrics, J. Amer. Math. Soc. 14 (2001), 623-715.
[3] A. A. Borisenko, Extrinsic geometry of strongly parabolic multidimensional submanifolds, Uspekhi Mat. Nauk 52 (1997), no.6(318); translation in Russian Math. Surveys 52 (1997), no. 6, 1141-1190.
[4] V. Cruceanu, P. Fortuny and P. M. Gadea, A survey on paracomplex geometry, Rocky Mountain J. 26 (1996), 83-115.
[5] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524.
[6] N. Ejiri, Isotropic harmonic maps of Riemann surfaces into the de Sitter space time, Quart. J. Math. Oxford 39 (1988), 291-306.
[7] N. Ejiri, Willmore surfaces with a duality in $S^{N}(1)$, Proc. London Math. Soc. 57 (1988), 383-416.
[8] F. R. Harvey, Spinors and Calibrations, Academic Press (1990).
[9] G. Ishikawa, M. Kimura and R. Miyaoka, Submanifolds with degenerate Gauss mappings in spheres, Advanced Studies in Pure Mathematics, 37 (2002), 115-149.
[10] S. Kaneyuki and M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8 (1985), 81-98.
[11] M. Kimura, Minimal immersions of some circle bundles over holomorphic curves in complex quadric to sphere, Osaka J. Math., 37 (2000) 883-903.
[12] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press (1983).
[13] T. Weinstein, Lorentz surfaces, Walter de Gruyter (1996).
Department of Mathematics, Faculty of Science and Engineering, Shimane UniVERSITY

E-mail address: mkimura@math.shimane-u.ac.jp

[^0]: The research has been partially supported by Grants-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan, No. 13640073.

