Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science **36** (2003), pp. 61–67

SPACE OF GEODESICS IN HYPERBOLIC SPACES AND LORENTZ NUMBERS

MAKOTO KIMURA

(Received: January 31, 2003)

In this note, we will study about the space of oriented geodesics in hyperbolic spaces \mathbb{H}^n . It is well-known that the space of oriented geodesics (i.e., oriented great circles) in spheres \mathbb{S}^n is identified with oriented real 2-plane Grassmannian $\widetilde{G}_2(\mathbb{R}^{n+1})$ and complex quadric Q^n . We will show that the space of oriented geodesics in \mathbb{H}^n is also given similarly by using *Lorentz numbers*. Oriented real 2-plane Grassmannian plays important roles among differential geometry of submanifolds. For example, let f be an immersion from a Riemann surface Σ to the Euclidean space \mathbb{R}^{n+1} . Then the Gauss map γ from Σ to the Grassmannian $\widetilde{G}_2(\mathbb{R}^{n+1})$ of oriented 2-plane in \mathbb{R}^{n+1} of f is *anti-holomorphic* (resp. *holomorphic*) if and only if the immersion f is minimal (resp. totally umbilical). Here we will remark that similar results valid for timelike surfaces in Lorentz space \mathbb{R}_1^{n+1} without proof.

1. Complex numbers and Lorentz numbers

According to [8] (section 4), we review the complex numbers \mathbb{C} and the Lorentz numbers \mathbb{L} . Let $\mathbb{R}(2,0)$ be the vector space \mathbb{R}^2 with an inner product $\varepsilon_{2,0}(x,y) = x_1y_1 + x_2y_2$. The square norm associated with $\varepsilon_{2,0}$ is defined by $||x|| = \varepsilon_{2,0}(x,x)$. Then the complex numbers \mathbb{C} are defined to be $\mathbb{R}(2,0)$ with the multiplication, given by (a,b)(c,d) := (ac - bd, ad + bc). Let 1 := (1,0) and i := (0,1), so that (a,b) = a + bi and $i^2 = -1$. Conjugation is defined by $\overline{z} = a - ib$ for z = a + ib. Note that $\overline{zw} = \overline{z}\overline{w}, z\overline{z} = ||z||$, and hence ||zw|| = ||z|| ||w||. If $z \neq 0$, then $z^{-1} = \overline{z}/||z||$, so that \mathbb{C} is a (commutative) field.

Let $e^{i\theta} = \cos\theta + i\sin\theta$ denote a point on the unit circle and note that $M_{e^{i\theta}}$, multiplication by $e^{i\theta}$, is an orthogonal transformation since $||e^{i\theta}|| = 1$. As a 2 × 2 real matrix,

$$M_{e^{i\theta}} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix},$$

so that $M_{e^{i\theta}} \in SO(2)$. Since $M_{e^{i\theta}e^{i\psi}} = M_{e^{i(\theta+\psi)}}$, the map $\theta \mapsto M_{e^{i\theta}}$ induces the group isomorphism, $\mathbb{R}/2\pi\mathbb{Z} \cong SO(2)$.

The research has been partially supported by Grants-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan, No. 13640073.

M. KIMURA

Let $\mathbb{R}(1,1)$ be the vector space \mathbb{R}^2 with an inner product $\varepsilon_{1,1}(x,y) = x_1y_1 - x_2y_2$. The square norm associated with $\varepsilon_{1,1}$ is defined by $||x|| = \varepsilon_{1,1}(x,x)$. Then the Lorentz numbers \mathbb{L} are defined to be $\mathbb{R}(1,1)$ with the multiplication, given by (a,b)(c,d) := (ac+bd, ad+bc). Let 1 := (1,0) and $\tau := (0,1)$, so that $(a,b) = a+b\tau$ and $\tau^2 = 1$. Conjugation is defined by $\bar{z} = a - b\tau$ for $z = a + b\tau$. Note that $\overline{zw} = \overline{z}\overline{w}, \ z\overline{z} = ||z||$, and hence ||zw|| = ||z|| ||w||. Thus if $||z|| \neq 0$ (z non null), then $z^{-1} = \overline{z}/||z||$ exists, while for ||z|| = 0 (z null) z can not have an inverse.

Let $e^{\tau\theta} = \cosh\theta + \tau \sinh\theta$ (calculate the formal power series for $e^{\tau\theta}$ to see that this definition is appropriate). Note that $M_{e^{\tau\theta}}$, multiplication by $e^{i\theta}$, is an orthogonal transformation since $||e^{\tau\theta}|| = 1$. As a 2 × 2 real matrix,

$$M_{e^{\tau\theta}} = \begin{pmatrix} \cosh\theta & \sinh\theta\\ \sinh\theta & \cosh\theta \end{pmatrix},$$

so that det $M_{e^{\tau\theta}} = 1$. Define a timelike vector $z = a + b\tau$ to be *future timelike* if b > 0. Since $M_{e^{\tau\theta}} = \sinh\theta + \tau \cosh\theta$, multiplication by $e^{\tau\theta}$ preserves the futurelike time cone. Thus, $M_{e^{\tau\theta}} \in SO^+(1,1)$ (the connected component of the identity of the Lorentz group O(1,1)). In fact, since $M_{e^{\tau\theta}e^{\tau\psi}} = M_{e^{\tau(\theta+\psi)}}$, the map $\theta \mapsto M_{e^{\tau\theta}}$ determines the group isomorphism, $\mathbb{R} \cong SO^+(1, 1)$.

2. Space of oriented geodesics in spheres

In this section we recall (cf. [9] and [11]) that space of oriented geodesics (i.e., oriented great circles) in the unit sphere \mathbb{S}^n in \mathbb{R}^{n+1} is identified with complex quadric Q^{n-1} in complex projective space \mathbb{CP}^n and oriented 2-plane Grassmannian $\widetilde{G}_2(\mathbb{R}^{n+1})$. Let \mathbb{R}^{n+1} be the Euclidean (n+1)-space, that is the set of all (n+1)tuples $\mathbf{p} = (p_1, \cdots, p_{n+1})$, with the dot product $\mathbf{p} \cdot \mathbf{q} = \sum p_j q_j$. Then $\mathbb{S}^n = \{\mathbf{p} \in$ $\mathbb{R}^{n+1} | \mathbf{p} \cdot \mathbf{p} = 1 \}$ is the unit sphere. The geodesic γ in \mathbb{S}^n of unit speed with $\gamma(0) = \mathbf{p}$ and $\gamma'(0) = \mathbf{x} (||\mathbf{x}|| = 1)$ is written as $\gamma(\theta) = \cos \theta \mathbf{p} + \sin \theta \mathbf{x}$. Let

(1)
$$V_2^{n+1} = \{ (\mathbf{e}_1, \mathbf{e}_2) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \mid \mathbf{e}_\alpha \cdot \mathbf{e}_\beta = \delta_{\alpha\beta} \ (\alpha, \beta = 1, 2) \}$$

be a *Stiefel manifold* of orthonormal 2-vectors in \mathbb{R}^{n+1} . As a homogeneous space, $V_2^{n+1} = SO(n+1)/SO(n-1)$ and $\dim_{\mathbb{R}} V_2^{n+1} = 2n-1$. We consider the action of SO(2) on V_2^{n+1} as

(2)
$$(\mathbf{e}_1, \mathbf{e}_2) \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} = (\cos\theta\mathbf{e}_1 + \sin\theta\mathbf{e}_2, -\sin\theta\mathbf{e}_1 + \cos\theta\mathbf{e}_2).$$

Then each orbit $\{(\cos\theta \mathbf{e}_1 + \sin\theta \mathbf{e}_2, -\sin\theta \mathbf{e}_1 + \cos\theta \mathbf{e}_2) | \theta \in \mathbb{R}\}$ of the action (2) is identified with a pair (γ, γ') of unit speed geodesic γ on \mathbb{S}^n and its unit tangent vector field γ' with $\gamma(0) = \mathbf{e}_1$ and $\gamma'(0) = \mathbf{e}_2$. Note that orbit space of the action (2) is nothing but the oriented 2-plane Grassmannian

$$\hat{G}_2(\mathbb{R}^{n+1}) = \{ \operatorname{span}\{\mathbf{e}_1, \mathbf{e}_2\} | \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta} = \delta_{\alpha\beta} \ (\alpha, \beta = 1, 2) \}$$

Then V_2^{n+1} is a principal fiber bundle over $\widetilde{G}_2(\mathbb{R}^{n+1})$ with structure group \mathbb{S}^1 and projection map $\pi: V_2^{n+1} \to \widetilde{G}_2(\mathbb{R}^{n+1})$ defined by

$$\pi((\mathbf{e}_1, \mathbf{e}_2)) = \operatorname{span}\{\mathbf{e}_1, \mathbf{e}_2\}.$$

The tangent space $T_{(\mathbf{e}_1,\mathbf{e}_2)}V_2^{n+1}$ is

$$\mathbb{R}(-\mathbf{e}_2,\mathbf{e}_1) \oplus \{(\mathbf{x}_1,\mathbf{x}_2) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \mid \mathbf{x}_1,\mathbf{x}_2 \perp \operatorname{span}\{\mathbf{e}_1,\mathbf{e}_2\}\}.$$

The inner product on $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ defined by

$$\langle (\mathbf{x}_1, \mathbf{x}_2), (\mathbf{y}_1, \mathbf{y}_2) \rangle = \langle \mathbf{x}_1, \mathbf{y}_1 \rangle + \langle \mathbf{x}_2, \mathbf{y}_2 \rangle$$

for $(\mathbf{x}_1, \mathbf{x}_2), (\mathbf{y}_1, \mathbf{y}_2) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$

induces a Riemannian metric \tilde{g} on V_2^{n+1} . Since \tilde{g} on V_2^{n+1} is invariant by the structure group, we may define a Riemannian metric g on $\tilde{G}_2(\mathbb{R}^{n+1})$ such that π is a Riemannian submersion.

The distribution given by

(3)
$$T'_{(\mathbf{e}_1,\mathbf{e}_2)}(V_2^{n+1}) = \{ (\mathbf{x}_1,\mathbf{x}_2) \in T_{(\mathbf{e}_1,\mathbf{e}_2)}(V_2^{n+1}) \mid \mathbf{x}_1,\mathbf{x}_2 \perp \operatorname{span}\{(\mathbf{e}_1,\mathbf{e}_2)\} \}.$$

defines a connection in the principal fiber bundle $V_2^{n+1}(\widetilde{G}_2(\mathbb{R}^{n+1}), S^1)$, because $T'_{(\mathbf{e}_1, \mathbf{e}_2)}$ is complementary to the subspace $\mathbb{R}(-\mathbf{e}_2, \mathbf{e}_1)$ tangent to the fiber through $(\mathbf{e}_1, \mathbf{e}_2)$, and invariant under the S^1 -action. The natural projection $\pi : V_2^{n+1} \to \widetilde{G}_2(\mathbb{R}^{n+1})$ induces a linear isomorphism of $T'_{(\mathbf{e}_1, \mathbf{e}_2)}(V_2^{n+1})$ onto $T_p(\widetilde{G}_2(\mathbb{R}^{n+1}))$, where $\pi((\mathbf{e}_1, \mathbf{e}_2)) = p$. The complex structure \widetilde{J} on $T'_{(\mathbf{e}_1, \mathbf{e}_2)}(V_2^{n+1})$ defined by

$$(4) \qquad (\mathbf{x}_1, \mathbf{x}_2) \mapsto (-\mathbf{x}_2, \mathbf{x}_1)$$

induces a canonical complex structure J on $\widetilde{G}_2(\mathbb{R}^{n+1})$ through $d\pi$. Then it can be seen that

$$J^2 = -1, \quad \langle JX_1, X_2 \rangle + \langle X_1, JX_2 \rangle = 0, \quad \nabla J = 0,$$

where ∇ denotes the Levi-Civita connection of $(\widetilde{G}_2(\mathbb{R}^{n+1}), g)$, so $\widetilde{G}_2(\mathbb{R}^{n+1})$ is a Kähler manifold.

Let $\mathbb{C}^{n+1} = \{\mathbf{z} = \mathbf{x} + i\mathbf{y} | \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n+1}\}$ be the *complex Euclidean space*, and define the dot product on \mathbb{C}^{n+1} as

$$(\mathbf{x} + i\mathbf{y}) \cdot (\mathbf{u} + i\mathbf{v}) = (\mathbf{x} \cdot \mathbf{u} - \mathbf{y} \cdot \mathbf{v}) + i(\mathbf{x} \cdot \mathbf{v} + \mathbf{y} \cdot \mathbf{u}),$$

where $\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^{n+1}$. The submanifold $V_{\mathbb{C}}^{2n-1}$ of \mathbb{C}^{n+1} is defined by

(5)
$$V_{\mathbb{C}}^{2n-1} = \{ \mathbf{z} \in \mathbb{C}^{n+1} | \ \mathbf{z} \cdot \bar{\mathbf{z}} = 2, \ \mathbf{z} \cdot \mathbf{z} = 0 \},$$

where $\bar{\mathbf{z}} = \mathbf{x} - i\mathbf{y}$ for $\mathbf{z} = \mathbf{x} + i\mathbf{y} \in \mathbb{C}^{n+1}$. Then the map

$$V_2^{n+1} \ni (\mathbf{e}_1, \mathbf{e}_2) \mapsto \mathbf{e}_1 + i\mathbf{e}_2 \in V_{\mathbb{C}}^{2n-1}$$

is a diffeomorphism. Moreover $V_{\mathbb{C}}^{2n-1}$ is a submanifold of $\mathbb{S}^{2n+1}(\sqrt{2})$ with radius $\sqrt{2}$ and is invariant under the action of unit complex numbers $\{e^{i\theta}\}$ on $\mathbb{S}^{2n+1}(\sqrt{2})$ defined by $\mathbf{z} \mapsto e^{i\theta}\mathbf{z}$. Hence if we denote $\pi : \mathbb{S}^{2n+1}(\sqrt{2}) \to \mathbb{CP}^n$ the Hopf fibration, then $\mathbb{Q}^{n-1} := \pi(V_{\mathbb{C}}^{2n-1})$ is nothing but the complex quadric in \mathbb{CP}^n defined by the

quadratic equation $z_0^2 + \cdots + z_n^2 = 0$, and is diffeomorphic to $\widetilde{G}_2(\mathbb{R}^{n+1})$ such that the following diagram is commutative:

3. Space of geodesics in hyperbolic spaces

In this section, we will see that space of oriented geodesics in the hyperbolic space \mathbb{H}^n is identified with some *indefinite* Grassmannian and given by using Lorentz numbers. Let \mathbb{R}^{n+1}_1 be the Minkowski (n+1)-space with the scalar product $p \cdot q = -p_0q_0 + \sum_{j=1}^n p_jq_j$ of signature (1, n). Then

$$\mathbb{H}^{n} = \{ p = (p_{0}, p_{1}, \dots, p_{n}) \in \mathbb{R}^{n+1}_{1} | p \cdot p = -1, p_{0} > 0 \}$$

is the hyperbolic space with constant sectional curvature -1 . The tangent space $T_p(\mathbb{H}^n)$ at $p\in\mathbb{H}^n$ is

$$T_p \mathbb{H}^n = \{ X \in \mathbb{R}^{n+1}_1 | X \cdot p = 0 \}.$$

Then the geodesic γ of unit speed in \mathbb{H}^n with $\gamma(0) = p \in \mathbb{H}^n$ and $\gamma'(0) = X \in T_{\mathbf{e}}(\mathbb{H}^n)$ (||X|| = 1) is written as

$$\gamma(t) = \cosh tp + \sinh tX.$$

Let

$$V_{1,1}^{n+1} = \{ (\mathbf{e}, \mathbf{f}) \mid \mathbf{e} = (e_0, e_1, \dots, e_n), \ \mathbf{f} \in \mathbb{R}_1^{n+1}, \ e_0 > 0, \\ \mathbf{e} \cdot \mathbf{e} = -1, \ \mathbf{f} \cdot \mathbf{f} = 1, \ \mathbf{e} \cdot \mathbf{f} = 0 \}.$$

Note that as a homogeneous space, $V_{1,1}^{n+1} = SO^+(1,n)/SO(n-1)$ and $\dim_{\mathbb{R}} V_{1,1}^{n+1} = 2n-1$, where $SO^+(1,n)$ is the proper Lorentz group (cf. [12]). We consider the action of $SO^+(1,1)$ on $V_{1,1}^{n+1}$ as

(6)
$$(\mathbf{e}, \mathbf{f}) \begin{pmatrix} \cosh\theta & \sinh\theta\\ \sinh\theta & \cosh\theta \end{pmatrix} = (\cosh\theta\mathbf{e} + \sinh\theta\mathbf{f}, \sinh\theta\mathbf{e} + \cosh\theta\mathbf{f}).$$

Then each orbit $\{(\cosh\theta\mathbf{e} + \sinh\theta\mathbf{f}, \sinh\theta\mathbf{e} + \cosh\theta\mathbf{f}) | \theta \in \mathbb{R}\}$ of the action (6) is identified with a pair (γ, γ') of unit speed geodesic γ on \mathbb{H}^n and its unit tangent vector field γ' with $\gamma(0) = \mathbf{e}$ and $\gamma'(0) = \mathbf{f}$. The orbit space of the above action is identified with the space of oriented geodesics in \mathbb{H}^n . We also identify $[(\mathbf{e}, \mathbf{f})] \in$ $V_{1,1}^{n+1}/SO^+(1,1)$ with the oriented 2-plane with a signature (1,1) in \mathbb{R}_1^{n+1} spanned by eand \mathbf{f} . Hence the space of oriented geodesics in \mathbb{H}^n is the oriented indefinite 2-plane Grassmannian $\widetilde{G}_{1,1}^+(\mathbb{R}_1^{n+1})$.

Let $\pi: V_{1,1}^{n+1} \to G_{1,1}^+(1,n)$ be the natural projection. Tangent space of $V_{1,1}^{n+1}$ at the point (\mathbf{e}, \mathbf{f}) is

$$T_{(\mathbf{e},\mathbf{f})}V_{1,1}^{n+1} = \{(\mathbf{x},\mathbf{y}) \mid \mathbf{x}, \ \mathbf{y} \in \mathbb{R}^{n+1}_1, \ \mathbf{x} \cdot \mathbf{e} = \mathbf{y} \cdot \mathbf{f} = \mathbf{x} \cdot \mathbf{f} + \mathbf{e} \cdot \mathbf{y} = 0\}.$$

Put

$$T'_{(\mathbf{e},\mathbf{f})} = \{ (\mathbf{x}, \mathbf{y}) \in T_{(\mathbf{e},\mathbf{f})} V_{1,1}^{n+1} \mid \mathbf{x} \cdot \mathbf{f} = \mathbf{y} \cdot \mathbf{e} \}.$$

Then the distribution $T'_{(\mathbf{e},\mathbf{f})}$ gives a connection on the principal fiber bundle $V_{1,1}^{n+1}(G_{1,1}^+(1,n), SO^+(1,1))$, and the projection π induces the linear isomorphism $\pi_*: T'_{(\mathbf{e},\mathbf{f})} \to T_{\pi(\mathbf{e},\mathbf{f})}G_{1,1}^+(1,n)$. For tangent vectors X_1, X_2 at $p \in G_{1,1}^+(1,n)$ and their horizontal lifts $(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2) \in T_{(\mathbf{e},\mathbf{f})}V_{1,1}^{n+1}$ with $\pi(\mathbf{e},\mathbf{f}) = p$, we put

(7)
$$\langle X_1, X_2 \rangle = -\mathbf{x}_1 \cdot \mathbf{x}_2 + \mathbf{y}_1 \cdot \mathbf{y}_2.$$

Then \langle , \rangle gives a semi-Riemannian metric g of signature (n-1, n-1) on $G_{1,1}^+(1, n)$. Note that these indefinite Grassmannian and semi-Riemannian metric are constructed by Ejiri [7].

1,

Let $P: T_pG^+_{1,1}(1,n) \to T_pG^+_{1,1}(1,n)$ be the linear endomorphism defined by

(8)
$$P\pi_*(\mathbf{x}, \mathbf{y}) = \pi_*(\mathbf{y}, \mathbf{x}),$$
$$(\mathbf{x}, \mathbf{y}) \in T'_{(\mathbf{e}, \mathbf{f})}, \quad \pi(\mathbf{e}, \mathbf{f}) = p$$

Then

(9)

$$P^2 =$$

(10) $\dim_{\mathbb{R}} \{ X | PX = \pm X \} = \dim_{\mathbb{R}} M/2,$

(11)
$$\langle PX_1, X_2 \rangle + \langle X_1, PX_2 \rangle = 0,$$

(12)
$$\nabla P = 0,$$

where ∇ denotes the Levi-Civita connection of $(G_{1,1}^+(1,n),g)$.

Definition 3.1. [4, 10] A tensor field P of type (1, 1) on a differentiable manifold M is called *almost product structure* (resp. *almost para-complex structure*) if (9) (resp. (9,10)) valid. A tensor field P of type (1, 1) on a semi-Riemannian manifold $(M, \langle , \rangle, \nabla)$ is called *almost para-Hermitian structure* (resp. *para-Kähler structure*) if (9,10,11) (resp. (9,10,11,12)) hold.

Note that on a para-Kähler manifold $(M, P, \langle , \rangle)$, a 2-form defined by $\omega(X, Y) = \langle PX, Y \rangle$ gives a symplectic form. $(G_{1,1}^+(1, n), P, \langle , \rangle)$ is a para-Hermitian symmetric space [4, 10], especially is a symplectic affine symmetric space.

Proposition 3.2. For an oriented 2-dimensional semi-Riemannian manifold (Σ_1^2, \cdot) with signature (1, 1), there is a canonical para-Kähler structure P on Σ_1^2 .

In fact, let (u, v) be an isothermal coordinate, which is compatible with the orientation of Σ_1^2 , i.e., $\partial_u \cdot \partial_u + \partial_v \cdot \partial_v = \partial_u \cdot \partial_v = 0$ and $\partial_u \cdot \partial_u < 0$. Then the canonical para-Kähler structure on Σ_1^2 is defined by

(13)
$$P\partial_u = \partial_v, \quad P\partial_v = \partial_u.$$

Let $\mathbb{L}^{n+1} = \{\mathbf{z} = \mathbf{x} + \tau \mathbf{y} | \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n+1}\}$ be the space of *Lorentz numbers*, and define the dot product on \mathbb{L}^{n+1} as

$$(\mathbf{x} + \tau \mathbf{y}) \cdot (\mathbf{u} + \tau \mathbf{v}) = (\mathbf{x} \cdot \mathbf{u} + \mathbf{y} \cdot \mathbf{v}) + \tau (\mathbf{x} \cdot \mathbf{v} + \mathbf{y} \cdot \mathbf{u}),$$

where $\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^{n+1}$. Then \mathbb{L}^{n+1} is naturally identified with the semi-Euclidean space \mathbb{R}^{2n+2}_{n+1} (cf. [12], pp.55) with the scalar product

$$\langle \mathbf{x} + \tau \mathbf{y}, \mathbf{u} + \tau \mathbf{v} \rangle = \operatorname{Re}((\mathbf{x} + \tau \mathbf{y}) \cdot (\mathbf{u} - \tau \mathbf{v})).$$

The submanifold $V_{\mathbb{L}}^{2n-1}$ of \mathbb{L}^{n+1} is defined by

(14)
$$V_{\mathbb{L}}^{2n-1} = \{ \mathbf{z} \in \mathbb{L}^{n+1} | \ \mathbf{z} \cdot \bar{\mathbf{z}} = -2, \ \mathbf{z} \cdot \mathbf{z} = 0 \},$$

where $\bar{\mathbf{z}} = \mathbf{x} - \tau \mathbf{y}$ for $\mathbf{z} = \mathbf{x} + \tau \mathbf{y} \in \mathbb{L}^{n+1}$. Then the map

 $V_{1,1}^{n+1} \ni (\mathbf{e}, \mathbf{f}) \mapsto \mathbf{e} + \tau \mathbf{f} \in V_{\mathbb{I}}^{2n-1}$

is a diffeomorphism. Moreover $V_{\mathbb{L}}^{2n-1}$ is a submanifold of the *pseudohyperbolic space* $\mathbb{H}_{n}^{2n+1}(\sqrt{2})$ (cf. [12], pp.110) with radius $\sqrt{2}$ and is invariant under the action of unit Lorentz numbers $\{e^{\tau\theta}\}$ on $\mathbb{H}_{n}^{2n+1}(\sqrt{2})$ defined by $\mathbf{z} \mapsto e^{\tau\theta}\mathbf{z}$. From these facts, we may consider the space of oriented geodesics in \mathbb{H}^{n} as "Lorentz quadric".

4. Gauss maps for timelike surfaces in the Lorentz spaces

Let $\varphi : \Sigma_1^2 \to \mathbb{R}_1^{n+1}$ be an immersion from an oriented timelike surface Σ_1^2 to the Lorentz space \mathbb{R}_1^{n+1} . Then its Gauss map τ is defined as

 $\tau: \Sigma_1^2 \to G_{1,1}^+(1,n), \quad \tau(p) = \varphi_*(T_p \Sigma_1^2).$

Proposition 4.1. (i) τ is conformal $\Leftrightarrow \varphi$ is pseudo umbilical.

(ii) τ is harmonic \Leftrightarrow mean curvature vector of φ is parallel with respect to the normal connection.

With respect to the almost product structure P (resp. \overline{P}) on Σ_1^2 (resp. $G_{1,1}^+(1,n)$) defined by (13) (resp. (8)), the following hold:

Proposition 4.2. (i) $\tau_* \circ P = \overline{P} \circ \tau_* \Leftrightarrow$ the mean curvature vector of φ vanishes.

(ii) $\tau_* \circ P = -\bar{P} \circ \tau_* \Leftrightarrow \varphi$ is totally umbilical.

References

- [1] R. L. Bryant, A duality theorem for Willmore surfaces, J. Diff. Geom. 20 (1984), 23-53.
- [2] R. L. Bryant, Bochner-Kähler metrics, J. Amer. Math. Soc. 14 (2001), 623-715.
- [3] A. A. Borisenko, Extrinsic geometry of strongly parabolic multidimensional submanifolds, Uspekhi Mat. Nauk 52 (1997), no.6(318); translation in Russian Math. Surveys 52 (1997), no. 6, 1141-1190.
- [4] V. Cruceanu, P. Fortuny and P. M. Gadea, A survey on paracomplex geometry, Rocky Mountain J. 26 (1996), 83-115.
- [5] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524.
- [6] N. Ejiri, Isotropic harmonic maps of Riemann surfaces into the de Sitter space time, Quart. J. Math. Oxford **39** (1988), 291-306.
- [7] N. Ejiri, Willmore surfaces with a duality in $S^N(1)$, Proc. London Math. Soc. 57 (1988), 383-416.
- [8] F. R. Harvey, Spinors and Calibrations, Academic Press (1990).
- [9] G. Ishikawa, M. Kimura and R. Miyaoka, Submanifolds with degenerate Gauss mappings in spheres, Advanced Studies in Pure Mathematics, 37 (2002), 115-149.
- [10] S. Kaneyuki and M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8 (1985), 81-98.
- [11] M. Kimura, Minimal immersions of some circle bundles over holomorphic curves in complex quadric to sphere, Osaka J. Math., 37 (2000) 883-903.

[12] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press (1983).

[13] T. Weinstein, *Lorentz surfaces*, Walter de Gruyter (1996).

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ENGINEERING, SHIMANE UNI-VERSITY

 $E\text{-}mail\ address:$ mkimura@math.shimane-u.ac.jp