R^3×S^1の共形的コンパクト化

島根大学理学部紀要 Volume 24 Page 17-20 published_at 1990-12-25
アクセス数 : 1197
ダウンロード数 : 83

今月のアクセス数 : 63
今月のダウンロード数 : 5
File
c0010024r002.pdf 344 KB エンバーゴ : 2001-09-29
Title
R^3×S^1の共形的コンパクト化
Title
Conformal Compactification of R^3×S^1
Title Transcription
R3×S1 ノ キョウケイテキ コンパクトカ
Creator
Matsunaga Hiromichi
Source Title
島根大学理学部紀要
Memoirs of the Faculty of Science, Shimane University
Volume 24
Start Page 17
End Page 20
Journal Identifire
ISSN 03879925
Descriptions
 In this article a conformal compactification of the space R^3 x S^1 is obtained, (§2) . In §3 a decay property of the curvature is given, and in §4 the maximum principle is applied and we discuss removable singularities. In §3, 4 we depend heavily on the elaborated works by Uhlenbeck, [2] , [4]. The result of this article is used to study symmetry breaking at infinity [3].
Language
eng
Resource Type departmental bulletin paper
Publisher
島根大学理学部
The Faculty of Science, Shimane University
Date of Issued 1990-12-25
Access Rights open access
Relation
[NCID] AN00108106