| ファイル情報(添付) | |
| タイトル |
DISCRETE MULTI-HARMONIC GREEN FUNCTIONS
|
| 著者 | |
| 収録物名 |
島根大学総合理工学部紀要.シリーズB
Memoirs of the Graduate School of Science and Engineering, Shimane University. Series B, Mathematics
|
| 巻 | 54 |
| 開始ページ | 1 |
| 終了ページ | 14 |
| 収録物識別子 |
ISSN 1342-7121
|
| 内容記述 |
抄録・要旨
The harmonic Green function ga of an infinite network defined as the unique Dirichlet potential which satisfies Δga = −δa. The biharmonic Green function ga(2) (x) is defined by the convolution of gx and ga in [6]. It is known that Δ2ga(2) = δa if ga(2) is finite and that ga(2) is a Dirichlet potential if ga has a finite Green energy. In this paper, we define the k-harmonic Green function ga(k) (x) as the convolution of gx(k−1) and ga if it converges. We study some potential theoretic properties related to ga(k).
|
| 言語 |
英語
|
| 資源タイプ | 紀要論文 |
| 出版者 |
総合理工学部
The Interdisciplinary Graduate School of Science and Engineering
|
| 発行日 | 2021-01-30 |
| 出版タイプ | Version of Record(出版社版。早期公開を含む) |
| アクセス権 | オープンアクセス |
| 関連情報 |
ソウゴウ リコウ ガクブ
|