Hydrogen-rich water inhibits glucose and α,β -dicarbonyl compound-induced reactive oxygen species production in the SHR.Cg-Leprcp/NDmcr rat kidney

Medical gas research 2 巻 2012 発行
アクセス数 : 1319
ダウンロード数 : 0

今月のアクセス数 : 42
今月のダウンロード数 : 0
タイトル
Hydrogen-rich water inhibits glucose and α,β -dicarbonyl compound-induced reactive oxygen species production in the SHR.Cg-Leprcp/NDmcr rat kidney
著者
収録物名
Medical gas research
2
収録物識別子
EISSN 2045-9912
内容記述
その他
Background
Reactive oxygen species (ROS) production induced by α,β-dicarbonyl compounds and advanced glycation end products causes renal dysfunction in patients with type 2 diabetes and metabolic syndrome. Hydrogen-rich water (HRW) increases the H2 level in blood and tissues, thus reducing oxidative stress in animals as well as humans. In this study, we investigated the effects of HRW on glucose- and α,β-dicarbonyl compound-induced ROS generation in vitro and in vivo.

Methods
Kidney homogenates from Wistar rats were incubated in vitro with glucose and α,β-dicarbonyl compounds containing HRW, following which ROS levels were measured. In vivo animal models of metabolic syndrome, SHR.Cg-Leprcp/NDmcr rats, were treated with HRW for 16 weeks, following which renal ROS production and plasma and renal α,β-dicarbonyl compound levels were measured by liquid chromatograph mass spectrometer.

Results
HRW inhibited glucose- and α,β-dicarbonyl compound-induced ROS production in kidney homogenates from Wistar rats in vitro. Furthermore, SHR.Cg-Leprcp/NDmcr rats treated with HRW showed a 34% decrease in ROS production. Moreover, their renal glyoxal, methylglyoxal, and 3-deoxyglucosone levels decreased by 81%, 77%, and 60%, respectively. Positive correlations were found between renal ROS levels and renal glyoxal (r = 0.659, p = 0.008) and methylglyoxal (r = 0.782, p = 0.001) levels.

Conclusion
These results indicate that HRW inhibits the production of α,β-dicarbonyl compounds and ROS in the kidneys of SHR.Cg-Leprcp/NDmcr rats. Therefore, it has therapeutic potential for renal dysfunction in patient with type 2 diabetes and metabolic syndrome.

Keywords: Hydrogen-rich water, α,β-dicarbonyl compounds, Oxidative stress, Metabolic syndrome model, Advanced glycation end products
言語
英語
資源タイプ 学術雑誌論文
出版者
BioMed Central
発行日 2012
アクセス権 メタデータのみ
関連情報
[PMID] https://www.ncbi.nlm.nih.gov/pmc/journals/1622
[PMID] 22776773
[DOI] 10.1186/2045-9912-2-18