定点理論による二自由度系を対象とした動吸振器の設計(第2報,異なる質量と剛性を持ち,二次質量が励振を受ける系の場合)

日本機械学会論文集 Volume 81 Issue 825 published_at 2015
アクセス数 : 1010
ダウンロード数 : 135

今月のアクセス数 : 45
今月のダウンロード数 : 4
File
Title
定点理論による二自由度系を対象とした動吸振器の設計(第2報,異なる質量と剛性を持ち,二次質量が励振を受ける系の場合)
Title
Design of dynamic absorber for two DOF system by fixed points theory (2nd report: case of the system with different mass and stiffness, and excited secondary mass)
Title Transcription
テイテン リロン 二 ヨル 二 ジユウド ケイ ヲ タイショウ トシタ ドウキュウシンキ ノ セッケイ ダイニホウ コトナル シツリョウ ト ゴウセイ ヲ モチ ニジシツリョウ ガ レイシン ヲ ウケル ケイ ノ バアイ
Creator
Tomimuro Takashi
Source Title
日本機械学会論文集
Transactions of the JSME (in Japanese)
Volume 81
Issue 825
Journal Identifire
ISSN 2187-9761
Descriptions
The fixed points theory is applied for the dynamic absorber attached to two degree of freedom system with different mass and stiffness. In this study, the case that the dynamic absorber is connected to the excited mass which is far from the base is considered. The frequencies of fixed points and the ratio of natural frequencies to equalize the amplitudes at fixed points are analytically derived, in case that the responses at fixed points are in phase. The damping coefficients which make fixed points extremal value are also obtained. It is found that some ratios of mass and stiffness have no fixed points with same amplitude in the frequency response curve of unexcited mass. But the fixed points always exist in the frequency response curve of excited mass. Furthermore, mass and stiffness ratios which equalize the amplitudes of all fixed points are obtained. For the frequency response curve of unexcited mass, the stiffness ratio that equalizes the amplitudes of all fixed points is uniquely determined for arbitrary chosen mass ratio. But for the frequency response curve of excited mass, the mass ratio changes the number of the stiffness ratio that equalizes the amplitudes of all fixed points into two or zero.
Subjects
Forced vibration ( Other)
Dynamic absorber ( Other)
Frequency response function ( Other)
Coupled vibration ( Other)
Fixed points theory ( Other)
Language
jpn
Resource Type journal article
Publisher
一般社団法人日本機械学会
The Japan Society of Mechanical Engineers
Date of Issued 2015
Rights
© 2015 一般社団法人日本機械学会
Publish Type Accepted Manuscript
Access Rights open access
Relation
[DOI] 10.1299/transjsme.14-00622
イッパン シャダンホウジン ニホン キカイ ガッカイ