ある右簡約的半群の右S-システムとしての移入的包絡について

島根大学理学部紀要 Volume 14 Page 25-34 published_at 1980-12-20
アクセス数 : 1581
ダウンロード数 : 76

今月のアクセス数 : 85
今月のダウンロード数 : 2
File
c0010014r003.pdf 1.31 MB エンバーゴ : 2001-09-28
Title
ある右簡約的半群の右S-システムとしての移入的包絡について
Title
Injective Hulls of Certain Right Reductive Semigroups as Right S-Systems
Title Transcription
アル ミギ カンヤクテキ ハングン ノ ミギ S システム トシテンノ イニュウテキ ホウラク ニツイテ
Creator
Source Title
島根大学理学部紀要
Memoirs of the Faculty of Science, Shimane University
Volume 14
Start Page 25
End Page 34
Journal Identifire
ISSN 03879925
Descriptions
Let S be a right reductive semigroup. Then the semigroup S is embedded in the semigroup Λ(S) of all left translations of S as its left ideal. Thus we regard S as a left ideal of Λ(S). Then Λ(S) is an essential extension of S as a right S-system. By Berthiaume [2] there exists the injective hull I(S) of S containing Λ(S) as a right S-subsystem. In §1, we give necessary and sufficient conditions that Λ(S) equals I(S). It turns out that both left zero semigroups and right reductive primitive regular semigroups satisfy any one of these conditions. Consequenly we show that full transformation semigroups (written on the left) and the direct product of columnmonomial matrix semigroups over groups are right self-injective. We also study right nonsingular semigroups, semilattices of groups S which satisfy the condition that Λ(S) = I(S). In §2, we state some results on right self-injective semigroups. In particular it is shown that any direct product of right self-injective semigroups with O amd 1 is right self-injective. Consequently we show that any direct product of self-injective semigroups is self-injective.
Language
eng
Resource Type departmental bulletin paper
Publisher
島根大学理学部
The Faculty of Science, Shimane University
Date of Issued 1980-12-20
Publish Type Version of Record
Access Rights open access
Relation
[NCID] AN00108106