Can a resting-state functional connectivity index identify patients with Alzheimer's disease and mild cognitive impairment across multiple sites?

Brain connectivity 7 巻 7 号 2017-09-01 発行
アクセス数 : 1768
ダウンロード数 : 99

今月のアクセス数 : 27
今月のダウンロード数 : 0
ファイル情報(添付)
タイトル
Can a resting-state functional connectivity index identify patients with Alzheimer's disease and mild cognitive impairment across multiple sites?
著者
Ozasa Kentaro
Yamaguchi Shuhei
収録物名
Brain connectivity
7
7
収録物識別子
ISSN 2158-0014
EISSN 2158-0022
内容記述
その他
Resting-state functional connectivity is one promising biomarker for Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, it is still not known how accurately network analysis identifies AD and MCI across multiple sites. In this study, we examined whether resting-state functional connectivity data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) could identify patients with AD and MCI at our site. We implemented an index based on the functional connectivity frequency distribution, and compared performance for AD and MCI identification with multi-voxel pattern analysis. The multi-voxel pattern analysis using a connectivity map of the default mode network showed good performance, with an accuracy of 81.9% for AD and MCI identification within the ADNI, but the classification model obtained from the ADNI failed to classify AD, MCI, and healthy elderly adults from our site, with an accuracy of only 43.1%. In contrast, a functional connectivity index of the medial temporal lobe based on the frequency distribution showed moderate performance, with an accuracy of 76.5 - 80.3% for AD identification within the ADNI. The performance of this index was similar for our data, with an accuracy of 73.9 - 82.6%. The frequency distribution-based index of functional connectivity could be a good biomarker for AD across multiple sites.
主題
Resting-state functional MRI ( その他)
Alzheimer’s disease ( その他)
default mode network ( その他)
multi-voxel pattern analysis ( その他)
frequency-distribution-based analysis ( その他)
hippocampus ( その他)
言語
英語
資源タイプ 学術雑誌論文
出版者
Mary Ann Liebert
発行日 2017-09-01
出版タイプ Accepted Manuscript(出版雑誌の一論文として受付されたもの。内容とレイアウトは出版社の投稿様式に沿ったもの)
アクセス権 オープンアクセス
関連情報
[DOI] 10.1089/brain.2017.0507
[PMID] 28666395