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Acronyms 24 

AD: Alzheimer's disease 25 

MCI: mild cognitive impairment 26 

ADNI: the Alzheimer's Disease Neuroimaging Initiative 27 

DMN: default mode network 28 

MVPA: multi-variate pattern analysis 29 

MMSE: mini-mental state examination 30 

CDR: clinical dementia rating,  31 

(C)ICA: (constrained) independent component analysis 32 

MTL: medial temporal lobe  33 

 34 
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Abstract 36 

Resting-state functional connectivity is one promising biomarker for Alzheimer's disease 37 

(AD) and mild cognitive impairment (MCI). However, it is still not known how accurately 38 

network analysis identifies AD and MCI across multiple sites. In this study, we examined 39 

whether resting-state functional connectivity data from the Alzheimer's Disease 40 

Neuroimaging Initiative (ADNI) could identify patients with AD and MCI at our site. We 41 

implemented an index based on the functional connectivity frequency distribution, and 42 

compared performance for AD and MCI identification with multi-voxel pattern analysis. 43 

The multi-voxel pattern analysis using a connectivity map of the default mode network 44 

showed good performance, with an accuracy of 81.9% for AD and MCI identification 45 

within the ADNI, but the classification model obtained from the ADNI failed to classify 46 

AD, MCI, and healthy elderly adults from our site, with an accuracy of only 43.1%. In 47 

contrast, a functional connectivity index of the medial temporal lobe based on the 48 

frequency distribution showed moderate performance, with an accuracy of 76.5 - 80.3% 49 

for AD identification within the ADNI. The performance of this index was similar for our 50 

data, with an accuracy of 73.9 - 82.6%. The frequency distribution-based index of 51 

functional connectivity could be a good biomarker for AD across multiple sites. 52 

 53 

  54 
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Introduction 55 

 Resting-state functional connectivity is a promising biomarker for Alzheimer’s 56 

disease (AD). In 2004, Greicius et al. reported for the first time that AD patients showed 57 

decreased resting-state functional connectivity in the default mode network (DMN), and 58 

this connectivity may ultimately prove to be a sensitive and specific biomarker for 59 

incipient AD (Greicius et al. 2004). Later, Jin et al. revealed that mild cognitive 60 

impairment (MCI), which is the prodromal stage of AD, showed decreased functional 61 

connectivity of the medial temporal lobe (MTL), a DMN region, despite an absence of 62 

atrophy (Jin et al. 2012). Many resting-state functional magnetic resonance imaging 63 

(fMRI) studies have addressed issues pertaining to early detection, classification, and 64 

prediction of AD.  65 

 Previous resting-state fMRI studies seem to provide optimistic rates for the 66 

classification of AD, MCI, and healthy elderly individuals. A number of different 67 

approaches, such as region of interest (ROI) (Balthazar et al. 2014; Challis et al. 2015; 68 

Chen et al. 2011; Wang et al. 2006), graph theory (Li et al. 2013; Supekar et al. 2008), 69 

regional homogeneity (Zhang et al. 2012), and multi-modal analysis (Dai et al. 2012; 70 

Dyrba et al. 2015; Koch et al. 2012), have showed very high performance (72-94% 71 

accuracy) for identification of AD patients. However, most previous evidence has 72 

demonstrated their usability based on analysis of just one site or dataset, except for a 73 

recent study by Teipel et al (2017). Their ROI-based approach achieved 74% and 72 % 74 

accuracy for AD and MCI classification respectively, using data from five sites with 75 

different scanners and measurement parameters (Teipel et al. 2017). Significant and 76 

quantitatively important inter-site differences remained in the temporal signal-to-noise 77 

ratio of resting-state fMRI data, and these were plausibly driven by hardware and pulse 78 

sequence differences across scanners which could not be harmonized (Jovicich et al. 79 

2016). An AD identification model or index should be robust across these differences. 80 

Such robustness necessitates that the model or index obtained from a given database can 81 

identify AD in an individual from another site, given that all sites cannot necessarily 82 

prepare their own healthy control data.  83 

Recently, multi-variate pattern analysis (MVPA) using machine learning 84 

(Mahmoudi et al. 2012) has been frequently used for AD identification. However, it is not 85 

clear whether the MVPA identification model at a given site or dataset can accurately 86 
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classify AD, MCI, and healthy elderly adults from other sites. One of the aims of our 87 

study was to undertake a performance evaluation of AD and MCI identification based on 88 

MVPA across databases. In addition, we propose a simpler index based on the functional 89 

connectivity frequency distribution. Decreased functional connectivity of the DMN has 90 

been repeatedly reported in AD (Joo et al. 2016; Krajcovicova et al. 2014; Sheline and 91 

Raichle 2013), and is expected to be a good marker for AD identification across databases. 92 

More voxels within the DMN are presumed to show decreased functional connectivity in 93 

AD, but the spatial distribution differs according to individuals or databases. To cancel 94 

out spatial differences between connectivity changes within the DMN, we applied an 95 

analysis based on the functional connectivity frequency distribution. This analysis 96 

depends on the notion that the mean connectivity of lower-ranked voxels in the frequency 97 

distribution would be smaller for AD than for healthy elderly adults, and might be more 98 

sensitive compared to the overall mean of the voxels within the local regions of the DMN. 99 

Our second aim for this study was to evaluate the performance of frequency distribution-100 

based analysis for AD and MCI identification across different databases. 101 

 102 

Materials and Methods 103 

 104 

Subjects 105 

ADNI (Patients and Controls): The first dataset used in this study was obtained 106 

from the Alzheimer’ Disease Neuroimaging Initiative (ADNI) database 107 

(adni.loni.usc.edu). The ADNI was launched in 2003, and the primary goal has been to 108 

test whether imaging, other biological markers, and clinical and neuropsychological 109 

assessment can be combined to measure the progression of early dementia (see 110 

www.adni-info.org for up-to-date information). Detailed inclusion criteria for the 111 

diagnostic categories can be found at the ADNI website 112 

(http://adni.loni.usc.edu/methods/). Thirty-three patients with AD (mean age = 72.5 years 113 

old, 16 females), 46 patients with amnestic MCI (late MCI in ADNI data, 72.9 y. o., 17 114 

female), and 48 healthy controls (HC: 74.7 y. o., 28 female) from the database were 115 

analyzed in this study. Data were selected based on the availability of resting-state fMRI 116 

datasets for patients with AD, MCI, and age-matched healthy subjects. AD patients with 117 

http://adni.loni.usc.edu/methods/
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CDR ≥ 2 were not included in our analysis. One additional AD patient was excluded 118 

because of excessive head movement during resting-state fMRI measurement (see 119 

preprocessing section). The demographic information for the ADNI subjects is 120 

summarized in Table 1. There were no significant age and sex differences between the 121 

groups.  122 

 SHIMANE (Patients, Controls, and Young): We recruited patients at Shimane 123 

University hospital to provide test data for AD and MCI identification. The inclusion 124 

criteria were defined as follows: 1) age > 60, 2) no signs of depression, 3) no presence or 125 

history of neurological or psychiatric disorders except for MCI or AD, 4) no presence or 126 

history of alcohol or drug abuse. Twenty-six patients with AD (mean age = 73.4 y. o., 12 127 

females), 19 patients with MCI (73.4 y. o., 9 females), and 20 HCs (71.3 y. o., 8 females) 128 

provided data for this study. The AD patients met the National Institute of Neurological 129 

and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related 130 

Disorders Association criteria for probable AD. The MCI patients fulfilled the criteria 131 

developed at a workshop convened by the National Institute on Aging and the 132 

Alzheimer’s Association (Albert et al. 2011). During the selection of age-matched control 133 

subjects, we recruited from local communities and excluded subjects with a MMSE score 134 

of ≤ 26, CDR of ≥ 0.5, and a history of neurological and/or psychiatric disease. Many 135 

additional subjects were tested but excluded because of missing data (1) or CDR = 2 (7), 136 

or excessive head movements during fMRI (3). The demographic information for these 137 

subjects are also summarized in Table 1. There were again no significant group 138 

differences for age or sex.  139 

In addition to the patients and healthy elderly controls, we used resting-state 140 

fMRI data from 44 healthy young subjects to make a template image of the DMN (see 141 

below). These individuals were 25.7 ± 3.1 years old, and the gender ratio was 22 / 22. All 142 

of the young subjects had no neurological or psychiatric disease. The Shimane University 143 

medical ethics committee approved this study, and all subjects gave their written informed 144 

consent to participate. 145 

 146 

Image Acquisition 147 

 Functional MRI data were acquired using Philips 3T scanners for the ADNI, a 148 

GE 3T scanner for the patients and elderly controls from SHIMANE, and a Siemens 1.5T 149 
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scanner for the young subjects from SHIMANE. Measurement parameter details are 150 

summarized in supplemental table 1. 151 

 152 

Overview of Analysis 153 

 First, we performed preprocessing for all resting-state fMRI data. We used an 154 

independent component analysis (ICA) approach to evaluate functional connectivity 155 

because ICA yields more reliable DMN connectivity measurements relative to seed-based 156 

analysis (Jovicich et al. 2016). A multicentric resting-state fMRI study by Jovicich et al. 157 

(2016) revealed that test-retest reproducibility error for DMN connectivity in the elderly 158 

was lower for ICA than seed-based analysis. Moreover, ICA is relatively unaffected by 159 

different temporal sampling rates (De Luca et al. 2006). To make a DMN template, an 160 

independent component analysis (ICA) was applied to the preprocessed data from the 161 

SHIMANE young subjects group. Then, a constrained ICA (CICA) using a mask image 162 

of the DMN extracted by the first ICA was performed for each individual (except the 163 

young group). Using the DMN functional connectivity map, we examined whether AD 164 

and MCI identification models based on the ADNI data could identify the AD and MCI 165 

patients from SHIMANE. The identification methods in this study were multi-voxel 166 

pattern analysis and frequency distribution analysis of functional connectivity.  167 

 168 

Preprocessing of Functional Images 169 

 Statistical Parametric Mapping (SPM12) was used for preprocessing. The 170 

functional images were realigned to remove any artifacts from head movement. Subjects 171 

who moved their head excessively (over 2 mm) were excluded from the following 172 

analysis. There were no head movement differences between the three groups for both 173 

ADNI and SHIMANE datasets (ADNI: AD, 0.58 ± 0.43 mm, MCI, 0.45 ± 0.27 mm, HC, 174 

0.47 ± 0.35 mm; SHIMANE: AD, 0.59 ± 0.43 mm, MCI, 0.45 ± 0.31 mm, HC, 0.41 ± 175 

0.27 mm). The images were corrected for differences in image acquisition time between 176 

slices, and were normalized to a Montreal Neurological Institute (MNI) template space 177 

by using DARTEL method. The effect of head movement parameters (12) and mean 178 

BOLD signals from whole brain, white matter and cerebrospinal fluids were removed at 179 

each voxel. Spatial smoothing was applied with full-wide half maxima equal to 6 mm. 180 

 181 
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DMN template 182 

 In order to develop templates of resting-state networks, datasets were used from 183 

younger individuals. This technique was used because many previous studies have 184 

reported aging effects on DMN (Biswal et al. 2010), suggesting that not only AD but also 185 

healthy elderly exhibit altered DMN. We performed a spatial ICA for the SHIMANE 186 

young group data using the Group ICA of the fMRI toolbox (GIFT). ICA is a data-driven 187 

multivariate signal-processing approach. In ICA, the signal observed at a given voxel is 188 

assumed to be the sum of the contributions of all the independent components (ICs). The 189 

spatial distributions of the IC voxel values are statistically independent from each other; 190 

the degree of contribution reflects the functional connectivity of the IC network. GIFT 191 

can confirm the contributions of all voxels to each IC as whole-brain images of z-scores. 192 

The maps were averaged to produce a component map, and a one-sample t-test was 193 

performed. An IC map including the medial prefrontal cortex, posterior cingulate cortex, 194 

precuneus, and inferior parietal lobe was selected as the DMN, and was binarized with 195 

the criteria of p < .05 with family-wise error (FWE) correction and voxel size > 200. 196 

Because the CICA requires at least two templates, we made a frontoparietal network 197 

(FPN) map in the same way. The DMN and FPN are task-negative and task-positive 198 

networks, respectively, and they are basically in an exclusive relationship. The binarized 199 

DMN and FPN images were used as templates for the CICA. 200 

 201 

Constrained Independent Component Analysis (CICA) 202 

 CICA helps to eliminate order ambiguity in the standard ICA. CICA is capable 203 

of extracting the desired independent components by incorporating prior information into 204 

the ICA contrast function when rough templates are available (Lu and Rajapakse 2005). 205 

We performed CICA using the DMN and FPN templates for each individual. In this case, 206 

CICA allowed us to detect ICs for each individual in the same manner, and to obtain stable 207 

DMN and FPN as first and second ICs with fixed order. This is an advantage considering 208 

actual AD identification in clinical contexts, because it avoids manual IC selection. The 209 

z-values of the DMN map were used for AD identification in this study. First, we 210 

compared the DMN map of the three groups in both datasets using a whole-brain ANOVA 211 

in SPM. The statistical criteria were set to uncorrected p < 0.001 at the voxel level and 212 

FDR-corrected p < 0.05 at the cluster level.  213 
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 214 

Multi-voxel pattern analysis  215 

 The Pattern Recognition for Neuroimaging Toolbox (PRoNTo) was used for 216 

MVPA. An MVPA flow chart is depicted in Figure 1. The z-value maps of the DMN were 217 

treated as spatial patterns, and statistical learning models were used to identify statistical 218 

properties of the data that could discriminate AD, MCI, and HC.  219 

First, we examined whether the DMN map could identify patients within the 220 

ADNI database. The learning and classification process involves four steps: (i) dividing 221 

the subjects into training and test sets, (ii) selecting discriminative regions, (iii) training 222 

the classifier model using the training data, and (iv) evaluating the performance of the 223 

model using the test data (see Figure 1, left). To examine the performance of the classifier, 224 

a leave-one-out cross-validation approach was taken, and every subject was selected once 225 

as the test data, with the remaining subjects forming the training data. AD, MCI, and HC 226 

in the training data were compared using ANOVA. Binary mask images which had 227 

regions showing significant decreased functional connectivity (p < 0.05 at voxel level) 228 

were created. The voxel values of the DMN map masked by the binary image were used 229 

as features. The support vector machine classifier (binary) and Gaussian process classifier 230 

model (multiclass) were trained by using the features of the training data. The default 231 

setting of PRoNTo was used as the parameter of the machine learning. The classifier 232 

models were applied to the test data to evaluate AD and MCI identification performance.  233 

 Next, we examined whether the classifier models based on the ADNI data could 234 

identify AD and MCI on the basis of the SHIMANE data. This analysis was similar to the 235 

above-described one, but the ADNI dataset was used as the training data. A whole brain 236 

ANOVA was applied to the training data (all subjects of ADNI) for feature selection, and 237 

all the voxels that showed a significant group difference (p < 0.05 at the voxel level) were 238 

included as input features in the machine learning. The classifier models calculated from 239 

the training data were applied to each individual’s data from SHIMANE to evaluate the 240 

performance of AD and MCI identification across databases (see Figure, 1 right).  241 

 242 

Frequency distribution-based analysis of functional connectivity  243 

 We propose a new simple index to classify AD and MCI. Because the medial 244 

temporal lobe (MTL) of AD patients commonly showed decreased functional 245 
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connectivity in both databases (see results), we focused on the MTL in this analysis. 246 

Based on the notion that more voxels in the MTL of AD patients show decreased 247 

functional connectivity compared to HCs, we carried out a frequency distribution-based 248 

analysis. A flow of this analysis is depicted in Figure 2. In this approach, the z-value of 249 

voxel i of the DMN obtained via the CICA was normalized by using the mean (m) and 250 

standard deviation (σ) of the ADNI control group as follows: zi’ = (zi – mi) / σi. When 251 

normalizing individual data for the ADNI control group, the m and σ did not include data 252 

from the present individual. The normalized DMN map was masked to extract the 253 

functional connectivity change (z’) of voxels within the MTL. The MTL was defined 254 

using Automated Anatomical Labeling (AAL), and consisted of the hippocampus, 255 

parahippocampal gyrus, and amygdala (1295 voxels in this study). The z’ within MTL 256 

was reshaped to a one-dimensional array and were sorted in ascending order. The 257 

distribution of z’ is depicted in the bottom right of Figure 2. Each voxel was ranked based 258 

on the order of sorted z’. We predicted that a distribution (histogram) of z’ within the 259 

MTL would shift to a negative value in AD patients. To confirm the prediction, we 260 

calculated mean z’ scores for the lower-ranked voxels (range: 10 - 100 % for MTL voxels, 261 

step: 10%), for each individual. The mean score for all voxels (100%) in the MTL 262 

corresponds with the normal ROI analysis. We performed receiver operated characteristic 263 

(ROC) analysis for mean z’ scores of lower-ranked voxels for each range to assess AD 264 

and MCI identification performance in each dataset. Similarly, we performed this analysis 265 

for core regions of DMN including the posterior cingulate cortex/precuneus, medial 266 

prefrontal cortex, and inferior parietal cortex. These ROIs were defined by the DMN mask 267 

obtained by data from young individuals (see above). 268 

 269 

Results 270 

 271 

Constrained Independent Component Analysis  272 

 Figure 3 shows the group differences for DMN connectivity among AD, MCI, 273 

and HC subjects. A whole brain ANOVA revealed a significant main effect of group for 274 

the bilateral hippocampus, and the functional connectivity of the regions were decreased 275 

in AD compared with MCI and HC (Figure 3 and supplemental Table 2). MCI did not 276 

show decrements of functional connectivity in the region in both datasets. To test effects 277 
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of brain atrophy, we conducted re-analyses after adding the voxel-wise gray matter 278 

density map as a covariate using Biological Parametric Mapping (Casanova et al. 2007). 279 

The method permits solving a general linear model by incorporating information obtained 280 

from other modalities, such that we could investigate group differences after excluding 281 

the effect of brain atrophy. The differences among the groups were still significant even 282 

after controlling for the effects of brain atrophy (see supplemental table 3), which means 283 

that the decreased functional connectivity of the hippocampus is independent of any 284 

effects of regional atrophy.  285 

 286 

Multi-voxel-pattern analysis  287 

 Figure 4 shows confusion matrixes and ROC curves obtained via MVPA. In the 288 

multiclass case, the model obtained by Gaussian process classifier identified patients with 289 

AD and MCI with high accuracy for the ADNI data (accuracy: 81.9%, Figure 4A). 290 

However, when applying the classifier model from the ADNI data to the SHIMANE data, 291 

AD and MCI identification accuracy decreased markedly (accuracy: 43.1%, Figure 4C). 292 

Similarly, the binary classification models between each group were able to precisely 293 

identify patients with AD or MCI in the ADNI data (accuracy of AD/HC: 91.4%, 294 

AD/MCI: 79.8%, MCI/HC: 90.4%), whereas the models failed to classify the SHIMANE 295 

data (accuracy of AD/HC: 58.7%, AD/MCI: 60.0%, MCI/HC: 51.3%). 296 

 297 

Frequency-distribution-based analysis of functional connectivity  298 

 The DMN functional connectivity map (z) was normalized for the ADNI healthy 299 

subjects, for both ADNI and SHIMANE data. Normalized functional connectivity (z’) 300 

within the MTL was extracted, and the frequency distribution of z’ was examined (Figure 301 

5A&E). The distributions for the AD group shifted to the negative, which means that 302 

more voxels in the MTL tended to show decreased functional connectivity in AD 303 

compared to MCI and HC individuals. This tendency was same for ADNI and SHIMANE 304 

data. We calculated the z’ averages within voxels, which showed stronger declines of 305 

functional connectivity among all voxels in the MTL, and compared the mean 306 

connectivity between the groups (Figure 5B&F). Mean connectivity was lower for AD 307 

than MCI and HC in each dataset (ps < 0.001). We conducted ROC analyses of mean 308 

connectivity (Figure 5C), and accuracy performance for the ADNI data was 76.5 - 80.3% 309 
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across the voxel ratio for the classification of AD and HC. The classifications of AD/MCI 310 

and MCI/HC showed lower performances (under 70%). Similarly, the accuracy 311 

performance for mean connectivity in the SHIMANE data was 73.9 - 82.6% for 312 

classification of AD and HC (Figure 5G). Figure 5 D&H shows the ROC analysis result 313 

for mean functional connectivity of the lower-ranked 50% voxels: There was no 314 

decrement in AD identification performance from the ADNI data to the SHIMANE data.  315 

 Moreover, to compare the performance between MTL and other DMN core 316 

regions, we applied our approach to posterior cingulate cortex, medial temporal cortex, 317 

and inferior parietal lobe. Figure 6 shows the identification accuracies using normalized 318 

functional connectivity of each region in ADNI and SHIMANE datasets. In both datasets, 319 

the AD classification accuracy based MTL were higher than those of each DMN core 320 

region and the entire DMN. 321 

 322 

Discussion 323 

 The aim of this study was to evaluate the AD and MCI identification 324 

performances of MVPA and frequency-distribution-based analysis across two distinct 325 

databases. Whereas MVPA failed to produce consistent identification across the databases, 326 

the frequency-distribution-based analysis maintained satisfactory AD identification 327 

performance. Our results suggest that AD and MCI identification using MVPA was 328 

overlearned for the test dataset (at least in a study with a small sample size), and a simpler 329 

index of functional connectivity distribution could yield a relatively robust identification 330 

index. 331 

 There is no doubt about the usability of MVPA in a database with abundant 332 

patients when healthy controls are available. For example, MVPA using the support vector 333 

machine indicated that network topology parameters (clustering coefficients, etc.) can 334 

classify AD patients and healthy elderly subjects with an accuracy of 63-93% (Li et al. 335 

2013). In addition, multi-modal approaches have been proposed. Dai et al. (2012) 336 

demonstrated that a combined model of gray matter volume and resting-state fMRI 337 

achieved an accuracy of 89%. Dyrba et al. (2015) also reported that a multi-kernel support 338 

vector machine using resting-state fMRI, diffusion tensor imaging, and gray matter 339 

volume showed excellent performance, with a classification accuracy of 82%. Challis et 340 

al. (2015) reported that a Bayesian Gaussian process logistic regression model including 341 
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age, MMSE, and the functional connectivity matrix achieved 97% accuracy for 342 

distinguishing AD patients from amnestic mild cognitive impairment subjects, and the 343 

performance of this model was better than that of the support vector machine. Although 344 

such results are very promising, all of these reports were based on just one site or one 345 

database. To the best of our knowledge, no previous study has examined MVPA 346 

performance for AD classification across multiple databases or sites. Similar to previous 347 

studies, MVPA for the DMN in the present study demonstrated high performance for AD 348 

identification within the ADNI database. However, when we applied that model to our 349 

database, AD identification performance remained at a chance level. This suggests that 350 

the AD identification model in question was overlearned and confined to the ADNI 351 

database. Such decreased performance of identifications across databases has also been 352 

found for other diseases. In a multi-site autism study using resting-state fMRI, some sites 353 

showed high accuracy (over 80%) in the leave-one-out cross validation of classification, 354 

but lower accuracy (60-65%) in the leave-one-site-out cross validation (Chen et al. 2016). 355 

Considering this evidence, MVPA might be useful only when a given site can prepare its 356 

own dataset. 357 

One of our ultimate goal was to establish a robust index for AD identification 358 

useful across multiple databases. Regarding this, MVPA might be an inadequate candidate 359 

due to the small size of available data pool. We proposed a simpler index based on the 360 

frequency distribution of functional connectivity as a candidate. We focused on the MTL, 361 

including the hippocampus. Many resting-state fMRI studies report altered functional 362 

connectivity of the MTL (Joo et al. 2016; Krajcovicova et al. 2014; Sheline and Raichle 363 

2013). We replicated the finding of altered functional connectivity of the MTL in the 364 

direct comparison of the DMN using CICA in both databases, which means that the MTL 365 

connectivity can provide important information to classify AD and healthy elderly 366 

subjects. Using the normalized functional connectivity of the MTL, the means of lower-367 

ranked voxels in the distribution were calculated. We found that the means of functional 368 

connectivity were lower for AD patients than healthy elderly subjects, in both datasets. 369 

ROC analysis revealed that the mean connectivity can distinguish AD patients and 370 

healthy elderly subjects with good performance for both database. AD identification for 371 

the SHIMANE database maintained moderately accurate despite initial development 372 

using a different database, which means that the frequency distribution-based analysis for 373 
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functional connectivity of the MTL could be a good tool in actual clinical settings.  374 

With regard to MCI, we found that MVPA succeeded in identifying ADNI data 375 

(accuracy: 90.4%). Such high accuracy over 90% within a dataset has been reported in 376 

some rsfMRI studies, including those using an ROI-based approach (Article et al. 2014; 377 

Suk et al. 2015), multi-resting networks detected by ICA (Jiang et al. 2014), and a graph 378 

theory approach (Khazaee et al. 2017). Our results suggest that if the identification is 379 

performed only within one dataset or one site, MCI can be identified by only DMN with 380 

high accuracy. However, both MVPA and our approach failed to discriminate MCI from 381 

HC across datasets. This is because there were no common features of MCI in the two 382 

datasets, even in MTL. The absence of common features might result from the variety of 383 

MCI patients. MCI is considered as a prodromal state of AD; however the annual 384 

conversion rate is about 7% to AD (Mitchell and Shiri-Feshki 2009). Some patients 385 

appear to improve cognitive performance over time. For example, 19.5% of MCI had 386 

recovered and an additional 61% neither improved nor deteriorated (Wolf et al. 1998). 387 

MCI may not be a homogenous condition but may comprise several disease groups 388 

unified by the propensity to cause modest cognitive impairment. MCI patients in this 389 

study were of the amnestic type, but more detailed MCI selection based on amyloid β 390 

and/or tau might contribute to improvement in MCI discrimination performance. 391 

RsfMRI might be useful not only early detection of AD but also in differentiating 392 

between AD and other diseases including dementia with Lewy bodies (DLB) and 393 

frontotemporal dementia (FTD). Several studies have reported that DLB patients showed 394 

decreased functional connectivity of DMN compared with AD (Franciotti et al. 2013; 395 

Galvin et al. 2011; Kenny et al. 2012; Lowther et al. 2014). In contrast, FTD seems to be 396 

correlated with disrupted salience network consisting of the anterior cingulate cortex and 397 

anterior insula (Seeley et al. 2007), which is affected by aging (Onoda et al. 2012). It is 398 

reported that FTD patients showed decreased functional connectivity of this salience 399 

network (Filippi et al. 2013; Zhou et al. 2010). In addition, Zhou et al. (2010) suggests 400 

that the combined index of DMN and salience network discriminated AD and FTD with 401 

100% accuracy. Future studies will focus on examining the applicability of the frequent-402 

distribution analysis for FTD and DLB. 403 

 404 

Conclusion 405 
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 In sum, we demonstrated that a simple index of MTL functional connectivity 406 

based on frequency distribution could be a better MRI biomarker for AD classification 407 

across datasets or sites. Such an index might be broadly applicable to resting-state fMRIs 408 

obtained in different sites and under different measurement conditions. 409 
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Figure legends 547 

 548 

Figure 1. Flowchart of the multi-voxel pattern analysis. ADNI: Alzheimer’s Disease 549 

Neuroimaging Initiative, SVM: support vector machine. 550 

 551 

Figure 2. Flowchart of analysis based on frequency distribution of functional connectivity. 552 

 553 

Figure 3. Comparison of functional connectivity in default mode network. (A) average 554 

functional connectivity map of all subjects in ADNI and SHIMANE datasets (FDR 555 

corrected p<0.05 at cluster and voxel levels). (B) Significant main effect of group in 556 

whole brain ANOVA (FDR-corrected p < 0.05 at cluster level and uncorrected p < 0.001 557 

at voxel level). (C) Functional connectivity of bilateral hippocampus for each group and 558 

two datasets. Data are shown as eigenvariate means within each significant cluster. 559 

Errorbar denotes standard error. 560 

 561 

Figure 4. Multi-voxel pattern analysis (MVPA) results. (A) Multiclass Gaussian process 562 

classification for ADNI data. (B) ROC analysis based on binary support vector machine 563 

for ADNI data. (C) Multiclass Gaussian process classification using ADNI model for 564 

SHIMANE data. (D) ROC analysis based on binary support vector machine using leave-565 

one-out method, for ADNI model for SHIMANE data. 566 

 567 

Figure 5. Frequency distribution analysis results for functional connectivity in the medial 568 

temporal lobe (Top: ADNI; Bottom: SHIMANE). Left plots (A & E) show the frequency 569 

distribution of normalized functional connectivity in the medial temporal lobe. Middle 570 

left plots (B & F) show the group comparisons for mean normalized functional 571 

connectivity as a function of lower-ranked voxel ratio. Middle right plots (C & G) show 572 

identification accuracy as a function of the voxel ratio. Right plots (D & H) show receiver 573 

ROC analyses for the index in the lower-raked voxels of 50%.  574 

 575 

Figure 6. Accuracy of identification using frequency distribution analysis for functional 576 

connectivity in regions of default mode network (DMN) (Top: ADNI; Bottom: 577 
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SHIMANE). PCC: posterior cingulate cortex, MPFC: medial prefrontal cortex, IPL: 578 

inferior cingulate cortex, MTL: medial temporal lobe.  579 

  580 
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Table 1. Demographic and clinical data of subjects. 581 

 ADNI  SHIMANE Statistics 

 AD MCI HC  AD MCI HC 

N 33 46 48  26 19 20  

Age 72.5±7.6 72.9±8.6 74.7±5.9  73.4±3.0 73.4±5.9 71.3±4.6 n.s. 

Sex 17/16 29/17 20/28  14/12 10/9 12/8 n.s. 

MMSE 21.7±3.1 27.2±2.5 29.4±0.9  20.0±5.4 27.2±1.8 29.2±1.2 AD<MCI<HC 

CDR 0.9±0.3 0.5 0  0.9±0.2 0.5 0  

AD: Alzheimer’s disease, MCI: mild cognitive impairment, HC: heathy controls, MMSE: 582 

Mini-mental State Examination, CDR: Clinical Dementia Rating Scale. 583 

 584 

  585 
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Table 2. Accuracy of classification for ADNI and SHIMANE datasets  586 

 Multiclass AD/HC AD/MCI MCI/HC 

Multi voxel pattern analysis 

ADNI 81.9 (0.001) 91.4 (0.001) 79.8 (0.001) 90.4 (0.001) 

SHIMANE 43.1 (0.001) 58.7(0.093) 60.0 (0.073) 51.3 (0.476) 

Frequency-distribution analysis (Low-ranked voxel 50%) 

ADNI - 80.3 (0.001) 68.4 (0.007) 63.8 (0.020) 

SHIMANE - 78.3 (0.001) 75.6 (0.001) 69.2 (0.028) 

Values within () denote p-values of permutation tests, and the iteration was 1000. 587 

 588 

 589 


