A constraint qualification characterizing surrogate duality for quasiconvex programming

Pacific Journal of Optimization Volume 12 Issue 1 Page 87-100 published_at 2016-01
アクセス数 : 1479
ダウンロード数 : 0

今月のアクセス数 : 64
今月のダウンロード数 : 0
File
PJO12_87.pdf 102 KB エンバーゴ : 2016-04-17
Title
A constraint qualification characterizing surrogate duality for quasiconvex programming
Creator
Source Title
Pacific Journal of Optimization
Volume 12
Issue 1
Start Page 87
End Page 100
Journal Identifire
ISSN 13489151
Descriptions
In this paper, we study a constraint qualification which completely characterizes surrogate duality for quasiconvex programming. We show that the closed cone constraint qualification for surrogate duality is a necessary and sufficient constraint qualification for surrogate strong duality and surrogate min-max duality via quasiconvex programming with convex constraints. Also, we compare our constraint qualification with previous ones for Lagrange duality and surrogate duality.
Subjects
surrogate strong duality ( Other)
surrogate min-max duality ( Other)
quasiconvex programming ( Other)
constraint qualification ( Other)
Language
eng
Resource Type journal article
Publisher
Yokohama Publishers
Date of Issued 2016-01
Rights
Copyright © 2016 Yokohama Publishers
Publish Type Accepted Manuscript
Access Rights restricted access
Relation
isVersionOf [URI] http://www.yokohamapublishers.jp/online2/oppjo/vol12/p87.html isVersionOf
Remark 本誌はYokohama Publishersの電子ジャーナルサイトから冊子体発行後、一定期間を設けて無料で公開されます。