ある種の楕円曲面上の複素平面束について

島根大学文理学部紀要. 理学科編 Volume 10 Page 31-34 published_at 1976-12-20
アクセス数 : 1043
ダウンロード数 : 67

今月のアクセス数 : 131
今月のダウンロード数 : 1
File
c0030010r005.pdf 428 KB エンバーゴ : 2002-01-25
Title
ある種の楕円曲面上の複素平面束について
Title
On Plane Bundles over Some Elliptic Surfaces
Title Transcription
アル シュ ノ ダエン キョクメン ジョウ ノ フクソ ヘイメン ソク ニツイテ
Creator
Matsunaga Hiromichi
Source Title
島根大学文理学部紀要. 理学科編
Memoirs of the Faculty of Literature and Science, Shimane University. Natural sciences
Volume 10
Start Page 31
End Page 34
Journal Identifire
ISSN 03709434
Descriptions
M. F. Atiyah has given the cuassification theorem for holomorphic vector bundles over an elliptic curve, (Theorem 7, [2]). In the proof, two lemmas are effective, which are called the uniqueness and existence theorems. These are the motive for this paper. In §1, we prove that, over a product surface of a non singular curve and an elliptic curve, if a line bundle satisfies some condltion about a local triviality and the Chern class, then it admits a non trivial extension to a-plane bundle. This fact corresponds to Lemma 16, [2] . In §2, we define a strongly reducible plane bundle and prove that not every plane bundle is strongly reducible over a basic member (8, [4]) on an algebraic curve of genus greater than one. This fact corresponds to Lemma 15, [2].
Language
eng
Resource Type departmental bulletin paper
Publisher
島根大学文理学部
The Faculty of Literature and Science, Shimane University
Date of Issued 1976-12-20
Access Rights open access
Relation
[NCID] AN0010806X