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M. F. Atiyah has given the classification theorem for holomorphic vector bundles over an
elliptic curve, (Theorem 7, [2]). In the proof, two lemmas are effective, which are called the
uniqueness and existence theorems. These are the motive for this paper. In §1, we prove
that, over a product surface of a non singular curve and an elliptic curve, if a line bundle satisfies
some condition about a local triviality and the Chern class, then it admits a non trivial extension
to a-plane bundle. This fact corresponds to Lemma 16, [2]. In §2, we define a strongly reducible
plane bundle and prove that not every plane bundle is strongly reducible over a basic member
(8, [4]) on an algebraic curve of genus greater than one. This fact corresponds to Lemma 15, [2].

§1. Extensions of line bundles

Let S be the product surface 4 x C of a non singular algebraic curve 4 and an el-
liptic curve C. Let G—S be a holomorphic line bundle. The surface S admits an
open covering {U;x C,}, where {U;}, {C,} are open coverings of 4, C, respectively.
Let {h;un(t 2)} be a system of transition functions of G,

By (Ujx C) N (Ugx C)—> C*=C—{0},

where C* is the set of complex numbers without the origin O. We call the line bundle
G to be locally A-trivial if and only if

010g hjg)jn(t: 2)
ot

=Y ;mt, 2) =Vt z) in U;xC,

where V41, 2), ¥j(q(t, 2) are C* in t and holomorphic in z, and the fraction of their
exponentials exp \ ¥ ;. (t, z)dt [exp Sw j(@(t, 2)dt is holomorphic in 7. Then we have

Y, r (t9 Z)
By i 2) =?;:;T;)—ﬁj(qmr)(z ) 0

where ¥,(t, z)=expS¢/ it 2Ddt, Vit z)=exp§ Vit 2)dt, then hjgi0y(2) is
holomorphic. It can be seen that
h 0@ @Dhjwin(@ = himin @)

so, for each U, {hj;»(2)} is a system of transition functions of a line bundle over C.
We denote this line bundle by G,. Suppose that first Chern class Cy(Gy) is 1, then by
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Lemma 16, [2], there exists an indecomposable plane bundle E,—C, unique up to iso-
morphism, given by an extension

00— I — E;—> Gy — 0,

where I is the product line bundle and C,(E,)=1. The system of transition functions
of E, is given by
( 1 hygym(@) )
0 Rygjen(2)

h@ie @+ i (@ gy jory(2) = ﬁ}(p)j(r)(z) >

By the relation

we have

Tj(r)(ts Z) ]"1'

Ty G 2) @I Liw( 9y ikt 2)
: l, z
Jj(p)\*s

(Z)"'W j(p)j(q)(z)mﬁj(q)j(r)

q] j(r (t, Z) iy
=mhi(p)i(r)(z)'
Then the system

¥, 2) ¥, z) »
¥ 0t 2) P s 2) R in(2)

qu(r)(t9 Z) E

0 Yin 2) i
Vo, z) 1@ y(2)

is also a system of transition functions of an indecomposable plane bundle over U; x C.
Thus we obtain an extension of the bundle G(U;) over U;x C which has the system
of transition functions in the right hand side of (1),

0— I(U;) — E(U;) — G(U;) — 0,

for each j, where I(U;) is the line bundle with the system of transition functions
¥ 2)
¥ 2)

Now we have holomorphic maps

In (1) the equality should be understood as an equivalence.

fix: Uy n Uy — Isomorphism (G(U)|U; n Uy, GUYIU; n Uy).

For each te U; n Uy and C,, we have the exact sequence of sheaves of germs of holo-
morphic sections over C,,

0—1I,—E,— G,—0,
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which admits a splitting h,: G,—E,. Denote by Syt GP -G the mapping induced
from f};, where G{), G(") are restrictions of G(U;), G(U) on C,nC, respectively.
Then we have the followmg commutative diagram (1, [1]),

IPOGP 25 EQP L IDOGP

11@fqr l ar 11(&91'."

IPOGP te, ER i [ODGP,
where fq,(s’ +h,(s")=5"+h(f,(s") for s’ eI, s"e GSP. Thus we obtain a holo-
morphic mapping
Jiw: U;n Uy—>Isomorphism (E(U)|U; n U,, E(UR|U, n Uy
such that the next diagram is commutative,
0— I(U;nU,) — E(UN|U;nU, — GU)|U;nU, — 0
P,ku(vmvk) lfﬂ‘ lfjk

Define a plane bundle E by E(U;)/(f;), then E is a plane bundle over S which is an
extension of the line bundle G—S. Hence we have

PrOPOSITION 1. Let 4 be a non singular algebraic curve and C be an elliptic
curve, and G—4x C be a locally A-trivial line bundle. Suppose that the first Chern
class C1(Gy)=1, where Go=G|{t,} x C for a point t, of A, then we have a non trivial
extension E of G by a line bundle F,

0O— F—E—G—0.

REMARK. Let G, be a line bundle with C,(G,)=1 and F, be a line bundle over
4. Denote by ny, m, the projections, m;: AX C—4, n,: Ax C—C. Then the line
bundle n}F,®7n%G, admits an extension which comes from the extension of G,.

§2. Irreducibility of plane bundles

Let S be a basic member over a non singular algebraic curve of genus g, (8, [4]).
The elliptic surface @: S—A4 admits a global section p: 4—S. We call a plane bundle
E over S to be strongly reducible if and only if the bundle E admits a line subbundle
F such that p*F is the trivial line bundle over 4. A plane bundle E is called strongl y
irreducible if E is not strongly reducible. We prove that

PROPOSITION 2.  Let the genus g be greater than 1. Then there exists a strongly
irreducible plane bundle over S.

ProoF. Let L be a line bundle over 4 with the first Chern class C,(L)=1.
By the Riemann Roch theorem for line bundles, (Theorem 13, [3]),
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dimg HO(4, O(L™1))—dimc HY(4, O(L~1))—Cy(L™1)=1—g,
and since C,(L~1)= —1, then dimc H%(4, O(L™*)=0. Thus we have
dimcH(4, O(L~Y)=g—1-C(L ") =g.

On the other hand, by Remark 10.1, [5], dim¢S, ;=3g—3, where S, ; is the set of
equivalence classes of stable plane bundles over 4 with determinant bundle L. The
cohomology group H!(4, O(L™1)) is the set of equivalence classes of extensions of
the line bundle L by the trivial line bundle I over 4,

00— I — Ej— L—0.
Suppose that every plane bundle over S is strongly reducible, then
dim¢ {p*E; E is a plane bundle and det p*E=L}<dimcH 1(4, O(L™1Y)).

Since { } of the left hand side in the above inequality includes as a subset p*®*S, |
=S, and 3g—3>g,itisa contradiction.

REMARK 1. M. F. Atiyah has presented an example which is a reducible plane
bundle over the product surface P x C of the projective plane P and an elliptic curve
C. His example is

0— [C]— E— [~C]— 0,
where [C] is the line bundle given by a divisor P x C for a point p of P.

REMARK 2. Ifg=1and Cy(L)=1, then dim; S, ;=0 and dimc H!(4, O(L~1))=0.
So we can get no information by this method.

REMARK 3. In 4, [6], it has been proved that not every plane bundle on the ruled
surface P x P is reducible.
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