タイトルヨミ | コテン グン ノ ドウヘン ホモトピー グン ニツイテ
|
日本語以外のタイトル | Equivariant Homotopy Groups of Classical Groups
|
ファイル | |
言語 |
英語
|
著者 |
松永 弘道
|
内容記述(抄録等) | In [4] we have studied the surjectivity of the forgetful homomorphism f(G, X) : K_G(X)→ K(X). The homomorphism gives informations about lifting actions on stabl vector bundles. One of the purpose of this paper is to study lifting actions on vector bundles and give actions explicitly for geometrical uses, for example, equivariant Hopf constructions and a lifting problem for other spaces than the spheres.
In section I we shall give a criterion for the existence of lifting actions which is obtained by G. Bredon's work [2]. Section 2 consists of results obtained by J. Folkinan's theorems [3], and Proposition 3 in [5]. Moreover we shall prove the equivariance for representatives of of generators of the groups _<π3>(SO(4)) and _<π7>(SO(8)). In section 3 we shall prove the equivariance of Bott maps [1], which present us various constructions of equivariant maps. In the last section we shall apply results in preceding sections and obtain a non existence theorem, equivanant Hopf constructions and a lifting property on complex plane bundles over the complex projective plane. |
掲載誌名 |
島根大学理学部紀要
|
巻 | 21
|
開始ページ | 21
|
終了ページ | 30
|
ISSN | 03879925
|
発行日 | 1987-12-25
|
NCID | AN00108106
|
出版者 | 島根大学理学部
|
出版者別表記 | The Faculty of Science, Shimane University
|
資料タイプ |
紀要論文
|
部局 |
総合理工学部
|
他の一覧 |