タイトルヨミ | サシュウゴウ ノ ハウスドルフ ジゲン ニ ツイテ ノ チュウイ
|
日本語以外のタイトル | Notes on Fractional Dimensions of Difference Sets
|
ファイル | |
言語 |
英語
|
著者 |
秦野 薫
|
内容記述(抄録等) | Under the continuum hypothesis W. Sierpinski [7] proved that a set E which possesses 'the property C' is of measure zero with respect to any Hausdorff measure but E-E=R^1. In his proof we can see that a difference set A-B is closely related to the orthogonal projection of the product set A×B in the xy-plane to the line y= -x. In [8] D. J. Ward defined an n-difference set D^r(E) of a non empty set E⊂R^1 and showed that dim D (E)≦min {nα, n-1} under the conditions that the set E is an α-set and it has positive lower density with respect to the α-dimensional Hausdorff measure at every point in it.
In this iemark we shall estimate the lower and upper bounds of fractional dimensions of difference sets and show that the upper bound is sharp. In §1, following [4] we shall define a perfect set of translation and under some condition we shall evaluate the Hausdorff measure of it in §2. In §3 we shall discuss the fractional dimensions of difference sets. |
掲載誌名 |
島根大学教育学部紀要. 自然科学
|
巻 | 13
|
開始ページ | 1
|
終了ページ | 9
|
ISSN | 05869943
|
発行日 | 1979-12-25
|
NCID | AN00107941
|
出版者 | 島根大学教育学部
|
出版者別表記 | The Faculty of Education Shimane University
|
資料タイプ |
紀要論文
|
部局 |
教育学部
|
他の一覧 |