タイトルヨミ | ビブンホウ ノ 1 キホン コウシキ ノ ショウメイ ノ キョウジュホウ ニツイテ
|
日本語以外のタイトル | On the Method of Teaching How to Prove a Fundamental Formula of Differentiation
|
ファイル | |
言語 |
日本語
|
著者 |
新宮 忠雄
|
内容記述(抄録等) | Almost every book of differential calculus treats the proof of the fundamental formula
(d/(dx))(x^n) = nx^<n-1> as follows : (1) Using the formula x^n_2 - x^n_1 = (x_2-x_1)(x^<n-1>_2+x^<n-2>_2x_1+・・・+x^<n-1>_1) (without any proof of this formula), or (2)Using the binomial formula. The former method has a defeat, that is, the used formula has no proof in the book, generally. The latter method is quite complete but it needs the binomial formula to be proved. For this purpose we have to teach 'permutation and combination' throughly, although it takes much time and it decreases ordiuary students' interest in mathematics and let them feel weary. To avoid these I advise to use the following metbod : First derive the formulae of differentiation of the sum, the product, and the quotient of two functions and of the composite function.※ Then with the mathematical induction and these formulae the derivative of x^n would be obtained easily without the use of the binomial theorem. ※ If n is limited to be an integer, this is not necessary. |
掲載誌名 |
島根農科大学研究報告
|
巻 | 3
|
開始ページ | 125
|
終了ページ | 126
|
ISSN | 05598311
|
発行日 | 1955-05-30
|
NCID | AN00108241
|
出版者 | 島根農科大学
|
出版者別表記 | The Shimane Agricultural College
|
資料タイプ |
紀要論文
|
部局 |
生物資源科学部
|
備考 | A,Bを含む
|
他の一覧 |