ファイル | |
言語 |
英語
|
著者 | |
内容記述(抄録等) | We study the nonlinear Schrödinger equation (NLS)
∂tu+iΔu=iλ|u|p−1u in R1+n, where n≥3, p>1, and λ∈C. We prove that (NLS) is locally well-posed in Hs if 1<s<min{4;n/2} and max{1;s/2}<p<1+4/(n−2s). To obtain a good lower bound for p, we use fractional order Besov spaces for the time variable. The use of such spaces together with time cut-off makes it difficult to derive positive powers of time length from nonlinear estimates, so that it is difficult to apply the contraction mapping principle. For the proof we improve Pecher's inequality (1997), which is a modification of the Strichartz estimate, and apply this inequality to the nonlinear problem together with paraproduct formula. |
主題 | Nonlinear Schrödinger equations
well-posedness
Besov spaces
|
掲載誌名 |
Communications on Pure & Applied Analysis
|
巻 | 18
|
号 | 3
|
開始ページ | 1359
|
終了ページ | 1374
|
ISSN | 1534-0392
|
ISSN(Online) | 1553-5258
|
発行日 | 2019
|
DOI | |
出版者 | American Institute of Mathematical Sciences
|
資料タイプ |
学術雑誌論文
|
ファイル形式 |
PDF
|
著者版/出版社版 |
出版社版
|
部局 |
総合理工学部
|