ファイル | |
言語 |
英語
|
著者 |
Yan, Yan
島根大学総合理工学専攻
|
内容記述(抄録等) | A discrete model describing the increase and decrease of blood cells is considered in this
paper. This hematopoiesis model is a discretization of a delay differential equation with unimodal production function whose coefficients and delay are periodic discrete functions with ω-period. This paper is concerned with the existence of positive ω-periodic solutions. Our results are proved by using the well-known continuation theorem of coincidence degree theory. The existence range of the positive ω-periodic solutions is also clarified. A concrete example and its simulation are also given to illustrate our result. Finally, we examine how positive numbers and coefficients making up our model influence the upper and lower limits of blood cell counts. |
主題 | Discrete hematopoiesis model
Unimodal production function
Positive periodic solutions
Existence Region
Continuation theorem
|
掲載誌名 |
Applied Mathematical Modelling
|
巻 | 68
|
開始ページ | 152
|
終了ページ | 168
|
ISSN | 0307-904X
|
発行日 | 2019-04
|
DOI | |
出版者 | Elsevier
|
資料タイプ |
学術雑誌論文
|
ファイル形式 |
PDF
|
著者版/出版社版 |
著者版
|
部局 |
総合理工学部
|