ファイル | |
言語 |
英語
|
著者 | |
内容記述(抄録等) | Parametric nonoscillation region is given for the Mathieu-type differential equation
x′′+(−α+βc(t))x=0, where α and β are real parameters. Oscillation problem about a kind of Meissner’s equation is also discussed. The obtained result is proved by using Sturm’s comparison theorem and phase plane analysis of the second-order differential equation y′′+a(t)y′+b(t)y=0, where a, b:[0,∞)→R are continuous functions. The feature of the result is the ease of chequing whether the obtained condition is satisfied or not. Parametric nonoscilla- tion region about (α,β) and some solution orbits are drawn to help understand the result. |
主題 | Parametric nonoscillation region
Damped linear differential equations
Mathieu’s equation
Meissner’s equation
Phase plane analysis
|
掲載誌名 |
Monatshefte für Mathematik
|
巻 | 186
|
号 | 4
|
開始ページ | 721
|
終了ページ | 743
|
ISSN | 0026-9255
|
ISSN(Online) | 1436-5081
|
発行日 | 2017-4-11
|
DOI | |
資料タイプ |
学術雑誌論文
|
ファイル形式 |
PDF
|
著者版/出版社版 |
著者版
|
部局 |
総合理工学部
|