ファイル | |
言語 |
英語
|
著者 |
Zheng, Wei
Department of Mathematics, Shimane University, Matsue
|
内容記述(抄録等) | The model to be dealt in this paper is
N′ = (a + ch(t) − dh(t)N − bP)N, P′ = (− c + dN)P. Here, h is a nonnegative and locally integrable function. This model is a predator-prey system of LotkaVolterra type with variable coefficients and it has a single interior equilibrium (c/d, a/b). Sufficient conditions are given for the interior equilibrium to be uniformly globally asymptotically stable. One of them is described by using a certain uniform divergence condition on h. Our result is p |
主題 | Uniform global asymptotic stability
Lotka-Volterra predator-prey model
Uniform divergence
Growth condition
Time-varying system
|
掲載誌名 |
Applied Mathematics Letters
|
巻 | 87
|
開始ページ | 125
|
終了ページ | 133
|
ISSN | 0893-9659
|
発行日 | 2019-01
|
DOI | |
出版者 | Elsevier
|
資料タイプ |
学術雑誌論文
|
ファイル形式 |
PDF
|
著者版/出版社版 |
著者版
|
部局 |
総合理工学部
|