ファイル | |
言語 |
英語
|
属性 |
Original Article
|
著者 |
細越 翔太
松尾 和明
|
内容記述(抄録等) | This study aimed to develop a model using U-net to extract the whole lung field from pseudo-chest X-ray images, including areas overlapping with cardiac and diaphragm shadows. Training involved pseudo-X-rays and lung label images from CT scans of 140 cases from the LIDC-IDRI dataset. The extraction performance of the model was evaluated using the Dice similarity coefficient (DSC). We also examined the correlations among patient size, lung volume, and DSC. As a result, the whole-lung field extraction model developed in this study tended to over-extract intestinal gas in some cases, and the extraction performance varied depending on the patient size. However, the DSC between the whole-lung label image and the output image was >0.9 for all the test data, indicating that the whole-lung field can be extracted from the pseudo chest X-ray image.
|
主題 | computed tomography
chest X-ray image
whole-lung field
segmentation
deep learning
|
掲載誌名 |
Shimane Journal of Medical Science
|
巻 | 41
|
号 | 3
|
開始ページ | 63
|
終了ページ | 71
|
ISSN | 03865959
|
ISSN(Online) | 24332410
|
発行日 | 2024-09
|
NCID | AA00841586
|
DOI | |
出版者 | Faculty of Medicine, Shimane University
|
出版者別表記 | 島根大学医学部
|
資料タイプ |
紀要論文
|
ファイル形式 |
PDF
|
権利関係 | Faculty of Medicine, Shimane University
|
権利関係(リンク) | This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
著者版/出版社版 |
出版社版
|
部局 |
医学部
|
他の一覧 |