ファイル | |
言語 |
英語
|
著者 |
Saito, Yasuhisa
Lee, Yong-Hoon
|
内容記述(抄録等) | This paper considers a Lotka–Volterra predator–prey model with predators receiving an environmental time-variation. For such a system, a unique interior equilibrium is shown to be globally asymptotically stable if the time-variation is bounded and weakly integrally positive. Our result tells that the equilibrium can be stabilized even by nonnegative functions that make the limiting system structurally unstable. Numerical simulations are also shown to illustrate the result and to suggest that cases with time-variation acting on predators have larger-scale convergence to the equilibrium than population dynamics with time-variation acting on prey.
|
主題 | Global asymptotic stability
Predator-prey systems
Weakly integrally positive
Time-variation
|
掲載誌名 |
Applied mathematics letters
|
巻 | 24
|
号 | 12
|
開始ページ | 1973
|
終了ページ | 1980
|
ISSN | 08939659
|
発行日 | 2011-12
|
DOI | |
DOI公開日 | 2017-05-22
|
NCID | AA1066807X
|
出版者 | Elsevier
|
資料タイプ |
学術雑誌論文
|
ファイル形式 |
PDF
|
権利関係 | Copyright © 2011 Elsevier Ltd. All rights reserved.
|
著者版/出版社版 |
著者版
|
部局 |
(旧組織)大学院総合理工学研究科
|