タイトルヨミ | ショウ イソウ ジュンジョ クウカン ニツイテ
|
日本語以外のタイトル | On the Quotient Topological Ordered Spaces
|
ファイル | |
言語 |
英語
|
著者 |
三輪 拓夫
|
内容記述(抄録等) | In the theory of general topology, the following theorem is well known(c. f. [2] or [4]) For a topological space X, and an equivalence relation R on X, if the quotient space X/R is Hausdorff, then R is closed in the product space X^2 . If the projection p of a space X onto the quotient space X/R is open, and R is closed in X^2, then X/R is a Hausdorff space. The analogy of this theorem in a topological ordered space has been obtained in the case where X is a compact ordered space (c. f. [9] Proposition 9). In this paper, we shall study the sufficient conditions for X/R to be T_2-ordered, and give some examples. For the problem of this kind, S. D. McCartan studied in [6] a particular quotient ordered space (that is, a quotient ordered space by a particular equivalence relation) which inherites some interesting properties of the domain ordered space.
The author wishes to express his gratitude to Professor Osamu Takenouchi for his helpful suggestions and encouragement in the preparation of this paper. |
掲載誌名 |
島根大学文理学部紀要. 理学科編
|
巻 | 7
|
開始ページ | 37
|
終了ページ | 42
|
ISSN | 03709434
|
発行日 | 1974-03-10
|
NCID | AN0010806X
|
出版者 | 島根大学文理学部
|
出版者別表記 | The Faculty of Literature and Science, Shimane University
|
資料タイプ |
紀要論文
|
部局 |
総合理工学部
|
他の一覧 |