ID | 3403 |
タイトルヨミ | タイショウ クウカン ノ ダイスウテキ モデル トシテノ ジュングン 3
|
日本語以外のタイトル | On Some Quasigroups of Algebraic Models of Symmetric Spaces(III)
|
ファイル | |
言語 |
英語
|
著者 |
吉川 通彦
|
内容記述(抄録等) | In this paper, we observe the fact that symmetric loops treated in the previous papers [1] and [2] are in a special class of homogeneous loops of [3]. It is shown that the homogeneous structures on symmetric loops are in one-to-one correspondence to quasigroups of reflection. Following N. Nobusawa [5], we consider abelian quasigroups of reflection and show that they correspond to homogeneous structures of a certain class of abelian groups. We give also an example of finite symmetric loop of 27 elements due to [5] . In conclusion of this series of notes we give some geometric observations on symmetric loops as affine symmetric spaces, when the natural differentiable structures are assumed on them. For this purpose we consider symmetric Lie loops of [3]. Then, by applying the results of [3] and [4], it will be seen that Lie triple systems can be regarded as the tangent algebras of symmetuc Lie loops.
|
掲載誌名 |
島根大学文理学部紀要. 理学科編
|
巻 | 9
|
開始ページ | 7
|
終了ページ | 12
|
ISSN | 03709434
|
発行日 | 1975-12-20
|
NCID | AN0010806X
|
出版者 | 島根大学文理学部
|
出版者別表記 | The Faculty of Literature and Science, Shimane University
|
資料タイプ |
紀要論文
|
部局 |
総合理工学部
|
他の一覧 |