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In this paper, we observe the fact that symmetric loops treated in the previous papers [1] 

and [2] are in a special class of homogeneous loops of [3] ･ It is shown that the homogeneous 

structures on syrmnetric loops are iu one-to-one correspondence to quasigroups of reflection. 

FoHowing N. Nobusawa [5], we consider abelian quasigroups of reflection and show that they 

correspond to homogemeous structures of a certain class of abelian groups. We grve also an 

example of finite symmetric loop of 27 elements due to [5] . In conclusion of this series of notes 

we give some geometric observations on symmetric loops as affine symmetric spaces, when the 

natural differentiable structures are assumed on them. For this purpose we comsider symmetric 

Lie loops of [3] ･ Then, by applying the results of [3] and [4], it will be seen that Lie trrple systems 

can be regarded as the tangent algebras of symmetuc Lie loops. 

S 1. Symmetric loops as homogeneous loops 

In [3] we have introduced the concept of homogeneous loops as follows : A 

loop G is said to be holnogeneous if it satisfies the following conditions (1) and (2) 

(.1) G has the left inverse property, i,e., each element x of G has an inverse element 

x~1 for which the equality x~ 1(xy) = y holds for any y in G 

(2) Any left inner mapping L*,y, for x and y in G, is an automorphism of G 

Moreover, if a homogeneous loop G satisfies the following condition (3), G is 

said to have the syrnln.etrjc property. 

(3) The mapping J(x) = x~ I of G onto itself is an automorphism of G 

In this section we review the results in [1] and [2] from the viewpoint of homoge-

neous loops. In the beginning we show the following theorem which provides another 

definition of symmetric loops. We notice that the condition for G to be power assocla-

tive is redundant in the definition of the symmetric loop G in [1] and [2] 

THEOREM 1. A Ioop G is a sylnrnetric loop if and on,ly if it is a homogeneous 

loop satisfying t/･re following con.ditions (1.1_-3) 

(.1.1) G /･ras the symmetric property. 

(1.'_) G is left alternative, i,e., L*,x=id holds for any x e G. 

(1.3) Eac/･7 elementx ofG has a unique squa,e root u u x In G 
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PROoF. The conditions (1.1-3) for a homogeneous loop G imply that G is left 

power alternative (i.e., Ieft di-associative in the strong sense). In fact, denoting x" = e 

(the identity), x" = xx"~1 and x~"=(x")~ I for x e G and for any positive integer n, we 

can show the equality (f*)'=f* i for any integer i, by a method similar to that in the 

proof of Propositron I [2] , where f* denotes the left translation by x. Then the theorem 

is reduced to Theorem 3 [2] . q. e. d. 
If a homogeneous loop G has the symmetric property, then the equality L*,*L*,* 

= id holds. We do not know whether the symmetric property (1.1) implies (1.2) or 

not. If G satisfies (1.1) and (1.3), then by Theorem I the subset G' = {y e G; L*,*y = y 

for all x e G} of G is a symmetric subloop of G 

Let G = G(') be a symmetric loop with the identity e. Then, by Theorem 2 [1], 

a quasigroup of reflection (G, *) is associated with G(') under the binary operation 

x* y = x(x y~ 1) . ( I .4) 

In [3] we considered the homogeneous structure (Definition I . 5 [3]) of a homogeneous 

loop G which assigns to each element a of G a homogeneous loop G(*), called the 

transposed loop centered at a, which is isomorphic to G('). Therefore, if G(') is a sym-

metric loop, then G(') is again a symmetric loop and the same quasigroup of reflection 

is associated with G(~) as one with G('). In fact, by Lemma I .8[3], the inverse y' 

of any element y in G(*) is equal to a(a~1y)~ 1, and so, describing (1.4) for G(*), we get 

x(~)(x(~)y') = a((a~ Ix)((a~ Ix)(a~ Iy)~ 1)) = x(xy~ 1), where (~) denotes the multiplication 

in G(~). Thus, given a symmetric loop G('), a unique quasigroup of refiection is associ-

ated with the homogeneous structure of G('). Let ip : {G(a); a e G}->{H(b.); b e H} 

be a homomorphism of homogeneous structures (cf. Definition I .5 [3]) of symmetric 

loops. ip induces a homomorphism of any symmetric loop G(*) into H("), a'=c(a) 

Then, by (1.4), it is clear that the mapping ip induces a homomorphism of the quasi-

groups of reflection corresponding to G(*) and H(a'). 

Conversely, given a quasigroup (G, *) of reflection, a symmetric loop G(') is 

defined for any element a e G by Theorem I [1] and the family {G(') ; a e G} defines a 

hoinogeneous structure of symmetric loops on G by Proposition 3 [1]. Since any 

homomoiphism of quasigroups of reflection induces homomorphisms of corresponding 

symmetric loops on them, taking Theorem 3 [1] into account, we have 

THEOREM 2. By assigning to each symlnetric loop a quasigroup of reflection of 

Theorem 2 [1], the bijective functor of the category of homogeneous structures of 

symmetric loops onto the category of quasigroups of reflection is obtained, and its 

inverse functor is induced by the assignment of Theorem I [1]. 

As an immediate consequence of this theorem we have 

COROLLARY. For a symmetric loop G, the automorphism group AUT(G, *) of 
the quasigrou.p of reflection (G, *) of G is equal to the automorphism group of the 
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homogeneous structure of G, identlfied under the functor of Theorem 2. 
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S 2. Abelian quasigroups of reflection 

N, Nobusawa [5] has treated the homogeneous symmetric structure of a finite 

set G which is a synonym of our finite quasigroup of reflection. In this section, we 

investigate the abelian condition for (not necessary finite) quasigroups of reflection, 

following [5]. 

Let (G, *) be a quasigroup of refiection. We denote a*b=S~b for a, b in G. 

Notice that the refiection S* across a is denoted here as an operation on the left, in 

contrast with [5] . Let L(G) be a subgroup of the group of permutations on G gener-

ated by S*Sb for all a, b in G 

LEMMA 1. L(G) is the left translation group ofthe symmetric loop G(*) associat-

ed with any element e e G by Theorem I [1] 

PROOF. The loop multiplication of the symmetric loop G(') is defined by xy = ~* 

(e*y) = SxS.y, for x, y in G, where 5~ is an element determined by 5~*e=x (cf. Theorem 1 

[1]). Thus the left translation f* of the symmetric loop G(') is expressed by S*-S. and 

so the left translation group of G(') is contained in L(G). Conversely, for any a, b in 

G, the equalities SbS~ =f(b")f(b") =f*f~-*bf~-ibf~1 show that L(G) is a subgroup of the 

left translation group of G('), where f ( ') denotes the left translation in the transposed 

100p G(*) of G('). q. e. d. 
We call a quasigroup of reflection G = (G, *) abelian if the group L(G) is an abelian 

group. As a partial generalization of Theorem 4 [5], we have 

THEOREM 3. For a quasigroup ofreftection G thefollowing conditions are mutu-

ally equivalent: 

(1) G is abelian. 

(2) L(G)={S.S.; a e G} for a fixed element e m G 

(3) The symmetric loop G(') associated with an elementeeGis an abelian group. 

PROOF. Since each element a of the symmetric loop G(*) has a unique square root 

~ given by d*e=a, and since the left translation f. in G(') is expressed by S"-S., it is 

easily seen that the associative law f.fb =f~b holds in G(') if and only if (2) is satisfied. 

Then, by the symmetric property of G(') and by Lemma I , we see that (2) is equivalent 

to (3). (1)

LEMMA 2. Let G(') be a loop with the identity e. The left translation group of 

G(') is abelian if and only if G(*) is an abelian group. 

PROOF. Suppose that the left translation group of G(') is abelian. Then, we See 
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that G(')･ is a commutative loop by applying the compositionf*fy of any two left transla-

tions to the identity e. Moreover, using this property, we get (xy)z=z(xy) =f.fxy 

=f*f.y = x(zy) = x(yz) for any x, y and z in G('). Hence G(') must be an abelian group 

The converse is clear. q. e. d. 
From Theorems 1-3 it follows that abelian quasigroups of reflection correspond 

one-to-one to homogeneous structures of abelian groups in which each element has~ a 

unique square root. That is, if G is an abelian group in which each element has a unique 

square root, then, with the binary operation a*b=a2b-1, for a, b in G, (G, *) is an 

abelian quasigroup of refiection, and any abelian quasigroup of reflection is realized 

in such a way. 

S 3. Examples of fimite symanetric lloops 

Here, we consider the examples due to N. Nobusawa [5]. A finite quasigroup 

of reflection (i.e., a homogeneous symmetric set) of 27 elements has been given in S 5 

[5] as follows : 

Let G={1, 2, 3,,.., 9; 1', 2',..., 9'; 1", 2",... 9"}. The reflections on G are de-

' =(k-i)';i'*k=(i+k)" I *k (21 k) I *k" k fined as i*k=2i - k, i*k' =(i + k)", l*k" 

l l"*k (1 k) ~"*k I - k, i"*k"=(2i-k)", where all integers are considered 

mod9. Then (G, *) is a quasigroup of reflection. Associated with e=1 of (G, *) 

we obtain the following symmetric loop which is not an abelian group. The loop 

multiplicatron x ' y on G is given as i ' k=i+k I I k (4(1 1)+k) I k" (5(1 1) 

+k)"; i"k=(i+k-1)', i' k (21 k+1)" I 'k"=i-k+2; i"'k=(1 k+1)" ~" k 
', ', = k-i+2, i ' k =(2i-k-1)', where all integers are considered mod 9. The left 

inner mappings Lx,y's are not equal to the identity permutation except for Li,j (i, j = 1, 

2,..., 9). The subloop G0= {1, 2,..., 9} rs an abelian subgroup. 

In the table of symmetric structures of a set {1, 2, 3, 4, 5} of S 6 [5], only homo-

geneous case is of Type 1. The associated symmetric loop of this type of quasigroup 

of reflection is the cyclic group of order 5. 

S 4. Finall remarks 

In the previous papers [1] and [2], we have investigated the conditions for loops 

to be global algebraic systems on symmetric spaces (refiection spaces) given by quasi-

groups of reflection, and arrived at the concept of symmetric loops. Furthermore, in 

[3], we have considered homogeneous loops, including both of groups and symmetric 

loops as special classes. Then, by supposing the natural differentiable structure on a 

homogeneous loop G, we have introduced the concept of homogeneous Lie loops and, 

givmg some geometric interpretations on the multiplication of G, we have developed in 

[3] and [4] the theory of geodesic homogeneous Lie loops and their tangent algebras, 
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called Lie triple algebras. In these discussions, in order to consider the special case 

when G rs reduced to a symmetric space, it is rather convenient to assume only 'the 

symmetnc property (1.1) of Theorem I for G, than assummg to be a symmetric loop, 

and so we call G a sylnlnet7'ic Lie loop if G is a connected homogeneous Lie loop with 

the symmetric property (cf. Theorem 6.1 and Definition 6.1 in [3]). In fact, if G is a 

symmetric Lie loop, then G is left alternative, i.e., (1.2) of Theorem I is satisfied, as was 

shown in Lemma 6.2[3]･ Moreover, G is an affine symmetric homogeneous space 
by Theorem 6.1 [3], and a curve x(t) throu_~h the identity e = x(O) of G is a geodesic 

curve if and only if x(t~) is a 1-parameter subgroup of G (cf. Propositions 5.4-5, Defini-

tion 5.1 and Theorem 6.4 in [3]), and so G can be regarded as satisfying the unique 

square root property (1.3) of Theorem I in local. 

r~ow, by applying the results in S 7 [3] and in [4], we have the following results 

on symmetric Lie loops 

THEOREM 4. Let G be a sJ;mrnetl'ic Lie loo_p. The Lie tl'iple algebl'a (~ of G 

is a Lie tl'iple systen'l under tlle te/'nary operatjon [X, Y, Z] =R.(X, Y)Z .fol' tan,gent 

vectors X, Y, Z at th,e identjty e, whel'e R denotes the cul'vature of the ca.nonjcal 

connection of G. Two sylnrnetl'ic Lie loops a/'e locally isomorphic if and only if tlleir 

Lie tl'jple systems a. 1'e isolnorphic. 

PRooF. These results are easily seen by Remarks 6.1, 7.1 and Corollary 7.9 in 

By Theorem 2 and Proposition 2 in [4] we have 

THEOREM 5. A connected Lie s'.lbloop H of a sJ7lnmetric Lie loop G is itself a 

symmetric Lie loop whose Lie triple system ~ is a subsJ'stern, of the Lie trip/e 

system ~ of G. 

We call H in the above theorem a sym.Inet/'jc Lie subloop of G. A symmetric Lie 

subl_oop H (resp. subsystem ~) of a symmetric Lie loop G (resp. the Lie triple system 

~ of G) is called left invariant if H (resp. ~) is invariant und_er the left inner mapping_ 

group of G. 

The following theorem is obtained as a corollary to Theorem I [4] 

THEOREM 6. Let G be a symrnetric Lie loop and (~f its Lie triple system.. For 

any left invarlant sylnmetric Lje subloop H, its Lie triple systeln ~~)_ is a luft inval'iant 

subsysteln of (5. Conve/'sely, for any left invariant subsystem ~ of ~, there exists 

a unique left inval'iant symmetric Lie stibloop H of rJ 14'hose Lie tl'iple systeln is ~_.r . 
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