ID | 641 |
タイトルヨミ | ムゲン ネットワークジョウ ノ マキシミニ セツダン モンダイ
|
日本語以外のタイトル | A Maximin Cut Problem on a Infinite Network
|
ファイル | |
言語 |
英語
|
著者 |
山﨑 稀嗣
|
内容記述(抄録等) | The study of duality relations between the max-flow problems and the min-cut problems seems to be one of the most important themes in the theory ofnetworks. On a finite network, the celebrated max-flow min-cut theorem due to Ford and Fulkerson [2] has been the unique result for this direction before the work of Strang [6]. On an infinite network, Yamasaki [7] and Nakamura and Yamasaki[4] gave several max-flow min-cut theorems related to several kinds of flows and cuts. In this paper, we shall introduce a notion of an exceptional set of cuts with respect to the extremal width and consider a maximin cut problem. It will be shown by using the penalty method that the value of this maximin problem is equal to thevalue of a max-flow problem.
For notation and terminology, we mainly follow [3] and [5]. |
掲載誌名 |
島根大学理学部紀要
|
巻 | 25
|
開始ページ | 7
|
終了ページ | 14
|
ISSN | 03879925
|
発行日 | 1991-12-25
|
NCID | AN00108106
|
出版者 | 島根大学理学部
|
出版者別表記 | The Faculty of Science, Shimane University
|
資料タイプ |
紀要論文
|
部局 |
総合理工学部
|
他の一覧 |