ID | 5020 |
タイトルヨミ | タイショウ ジュンハンイ オヨビ ジュンハンイ チュウオウ ニツイテ
|
日本語以外のタイトル | On the Symmetric Quasi-range and Quasi-midrange
|
ファイル | |
言語 |
日本語
|
著者 |
田村 亮二
|
内容記述(抄録等) | The statistical theory of extreme values was first systematically investigated in about 1925 by L. Von. Borpiewicz [1] and L. H. C. Tippett [2] for analizing the problem of flood especially. After that it has been developed by R. Von. Mises [8], Cumbel [3] [4] [7] and others, and this theory has become to be used in many different fields where the problems related to the extreme values appear, for instance, in quality control, in economics and in connection with breaking strength of material.
The statistcal studies of extreme values are meant to give an answer for two types of question : (1) Does an individual observation in a sample taken from a distribution, alleged to be known, fall outside, what proportion may reasonably be expected ? (2) How we may use the extreme statistics for the theories of testing hypothesis and estimation ? In this paper we shall investigate some properties of the generalized range and midrange for the second purpose, that is, we shall first derive the asymptotic distribution of mth-range and mth-midrange under the initial symmetric exponential type and second we shall compute the exact distribution for small sample size under the standarized normal distribution. |
掲載誌名 |
島根大学論集10周年記念論文集
|
巻 | 1
|
開始ページ | 143
|
終了ページ | 152
|
発行日 | 1960-02-29
|
出版者 | 島根大学
|
出版者別表記 | Shimane University
|
資料タイプ |
紀要論文
|
ファイル形式 |
PDF
|
著者版/出版社版 |
出版社版
|
部局 |
島根大学
|
備考 | 島根大学論集10周年記念論文集
|
他の一覧 |