ID | 38645 |
ファイル | |
言語 |
英語
|
著者 | |
内容記述(抄録等) | This paper is concerned with the oscillation problem for nonlinear differential equations of Euler type, which are denoted by (En) with n = 1, 2, 3, . . . . Equation (En) consists of a linear main term and a nonlinear perturbed term. If the nonlinear perturbation vanishes, then all nontrivial solutions of (En) are nonoscillatory. A pair of sufficient and necessary conditions on the perturbed term for all nonlinear solutions of (En) to be oscillatory is given. It is also proved that all solutions of (En) tend to zero.
|
掲載誌名 |
The Rocky Mountain journal of mathematics
|
巻 | 34
|
号 | 4
|
開始ページ | 1519
|
終了ページ | 1537
|
ISSN | 00357596
|
発行日 | 2004-11
|
DOI | |
出版者 | Rocky Mountain Mathematics Consortium
|
資料タイプ |
学術雑誌論文
|
ファイル形式 |
PDF
|
権利関係 | Copyright © 2004 Rocky Mountain Mathematics Consortium
|
著者版/出版社版 |
出版社版
|
部局 |
(旧組織)大学院総合理工学研究科
|