ID | 32747 |
ファイル | |
言語 |
英語
|
著者 | |
内容記述(抄録等) | In this paper, we consider minimization problems with a quasiconvex vector-valued inequality constraint. We propose two constraint quali12;cations, the closed cone constraint quali12;cation for vector-valued quasiconvex programming (the VQ-CCCQ) and the basic constraint quali12;cation for vector-valued quasicon-vex programming (the VQ-BCQ). Based on previous results by Benoist, Borwein, and Popovici (Proc. Amer. Math. Soc. 13: 1109-1113, 2002), and the authors (J. Optim. Theory Appl. 149: 554-563, 2011 and Nonlinear Anal. 74: 1279-1285, 2011), we show that the VQ-CCCQ (resp. the VQ-BCQ) is the weakest constraint quali12;cation for Lagrangian-type strong (resp. min-max) duality. As consequences of the main results, we study semi-definite quasiconvex programming problems in our scheme, and we observe the weakest constraint qualifications for Lagrangian-type strong and min-max dualities. Finally, we summarize the characterizations of the weakest constraint qualifications for convex and quasiconvex programming.
|
主題 | quasiconvex programming
quasiaffine functions
vector-valued
constraint qualification
|
掲載誌名 |
Journal of Global Optimization
|
巻 | 55
|
号 | 3
|
開始ページ | 539
|
終了ページ | 548
|
ISSN | 09255001
|
発行日 | 2013-03
|
DOI | |
DOI公開日 | 2015-07-14
|
NCID | AA10831465
|
出版者 | Springer US
|
資料タイプ |
学術雑誌論文
|
ファイル形式 |
PDF
|
権利関係 | © Springer Science+Business Media, LLC. 2011
The final publication is available at Springer via http://dx.doi.org/10.1007/s10898-011-9807-x.
|
著者版/出版社版 |
著者版
|
部局 |
(旧組織)大学院総合理工学研究科
|