ID | 32746 |
ファイル | |
言語 |
英語
|
著者 |
Lee, Gue Myung
|
内容記述(抄録等) | Robust optimization problems, which have uncertain data, are considered. We prove surrogate duality theorems for robust quasiconvex optimization problems and surrogate min-max duality theorems for robust convex opti-mization problems. We give necessary and sufficient constraint qualifications for surrogate duality and surrogate min-max duality, and show some exam-ples at which such duality results are used effectively. Moreover, we obtain a surrogate duality theorem and a surrogate min-max duality theorem for semi-definite optimization problems in the face of data uncertainty.
|
主題 | Nonlinear programming
quasiconvex programming
robust optimization
|
掲載誌名 |
European Journal of Operational Research
|
巻 | 231
|
号 | 2
|
開始ページ | 257
|
終了ページ | 262
|
ISSN | 03772217
|
発行日 | 2013-12-01
|
DOI | |
DOI公開日 | 2015-07-14
|
NCID | AA0017802X
|
資料タイプ |
学術雑誌論文
|
ファイル形式 |
PDF
|
著者版/出版社版 |
著者版
|
部局 |
(旧組織)大学院総合理工学研究科
|