ID | 49659 |
ファイル | |
言語 |
日本語
|
タイトルヨミ | テイテン リロン 二 ヨル 二 ジユウド ケイ ヲ タイショウ トシタ ドウキュウシンキ ノ セッケイ ダイニホウ コトナル シツリョウ ト ゴウセイ ヲ モチ ニジシツリョウ ガ レイシン ヲ ウケル ケイ ノ バアイ
|
日本語以外のタイトル | Design of dynamic absorber for two DOF system by fixed points theory (2nd report: case of the system with different mass and stiffness, and excited secondary mass)
|
著者 |
富室 崇志
Graduate School of Science and Engineering, Shimane University
|
内容記述(抄録等) | The fixed points theory is applied for the dynamic absorber attached to two degree of freedom system with different mass and stiffness. In this study, the case that the dynamic absorber is connected to the excited mass which is far from the base is considered. The frequencies of fixed points and the ratio of natural frequencies to equalize the amplitudes at fixed points are analytically derived, in case that the responses at fixed points are in phase. The damping coefficients which make fixed points extremal value are also obtained. It is found that some ratios of mass and stiffness have no fixed points with same amplitude in the frequency response curve of unexcited mass. But the fixed points always exist in the frequency response curve of excited mass. Furthermore, mass and stiffness ratios which equalize the amplitudes of all fixed points are obtained. For the frequency response curve of unexcited mass, the stiffness ratio that equalizes the amplitudes of all fixed points is uniquely determined for arbitrary chosen mass ratio. But for the frequency response curve of excited mass, the mass ratio changes the number of the stiffness ratio that equalizes the amplitudes of all fixed points into two or zero.
|
主題 | Forced vibration
Dynamic absorber
Frequency response function
Coupled vibration
Fixed points theory
|
掲載誌名 |
日本機械学会論文集
|
巻 | 81
|
号 | 825
|
ISSN | 2187-9761
|
発行日 | 2015
|
DOI | |
出版者 | 一般社団法人日本機械学会
|
出版者ヨミ | イッパン シャダンホウジン ニホン キカイ ガッカイ
|
出版者別表記 | The Japan Society of Mechanical Engineers
|
資料タイプ |
学術雑誌論文
|
ファイル形式 |
PDF
|
権利関係 | © 2015 一般社団法人日本機械学会
|
著者版/出版社版 |
著者版
|
業績ID | e27876
|
部局 |
総合理工学部
|