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1 Introduction

Random matrix theory (RMT) has served as fundamental tool for analysing quantum

spectra of classically chaotic systems. Universality of the level statistics of invariant RMTs

provides a basis upon which the system-specific information, due e.g. to the presence of

short periodic orbits or to the weak localization effect, may be encoded [1]. In the appli-

cation of RMT to QCD or gauge theories in general, the focus is on the distributions of

several smallest eigenvalues of chiral RM ensembles, as they describe the spectral statistics

of gauge-covariant Dirac operators in the broken phase of chiral symmetry. (Examples

of such applications are found in [2–6].) This relation is particularly useful with lattice

simulations. If a gauge theory is in the chirally broken phase and not in the conformal

window, its low-energy excitations are unambiguously described by the chiral Lagrangian

on one of the Riemannian symmetric spaces (Nambu-Goldstone manifolds) M. In that

case, (i) the low-lying Dirac eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · measured on lattices of dif-

ferent volumes V will, after prescribed unfolding xk = ΣV λk and scaling of quark masses

µf = ΣV mf , with a constant Σ independent of the volumes, obey a single statistical dis-

tribution pk(x; {µf}) = 〈δ(x − xk)〉, and (ii) this distribution will be identical to the one

from the RMT that is equivalent to the zero-momentum part of the chiral Lagrangian on

M [7]. If the theory is in the symmetric phase of the chiral symmetry, no such scaling with

the volume, which collapses the distributions of λk’s from different volumes onto a single

function, would appear. Previously this criterion was applied to QCD around the critical

temperature, and the inconsistency with RMT (including non-scaling of unfolded Dirac

eigenvalues with volumes) was considered as a sign of chiral symmetry restoration [8]. In

addition, if the theory is conformal, no scale should appear so that the chiral condensate

Σ should disappear in the chiral limit and description with RMT is not applicable.

In the proposal of the walking technicolor model [9], the choice of the gauge group

of techni-gluons and the representation of techni-quarks are rather open (as long as the

one-loop beta function coefficient is negative and small), since these particles would be

confined under the energy scale of several hundred TeV and would escape direct detection.

This spurred extensive numerical searches of the conformal window (where β(g∗) = 0) and

the walking regime (where β(g) < 0 but small) on various lattice settings with choices of

colors/flavors/representations. Summaries of recent activities with lattice simulations are

found in [10–12]. In an attempt to identify the chirally broken phase below the conformal

window for the SU(3) NF = 4 and 8 systems, Fodor et al. [13] fitted the Dirac spectra

of these gauge theories to the analytic results from the chiral GUE (Dyson index β = 2).

Subsequently, one of the present author (I.K.) and others tried a similar comparison of the

Dirac spectrum of the SU(2) NF = 8 system (see e.g. [14–16] for the current situation of

this system) to the chiral GSE (β = 4) [17].

For the above approach of fitting Dirac spectra to the corresponding RMT predictions

to be practically useful, it is highly desirable to single out individual distributions of each of

the ordered RM eigenvalues pk(x) from the spectral density ρ(x; {µ}) = 〈
∑

k δ(x− xk)〉 =∑
k≥1 pk(x; {µ}), as the latter becomes rather structureless after a couple of oscillations

(figure 1).
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Figure 1. First eight eigenvalue distributions p1(x), . . . , p8(x) (red to purple), their sum (gray),

and the microscopic spectral density ρ(x) (black, normalized as ρ(∞) = 1/π) of the quenched

(NF = 0) chiral Gaussian unitary ensemble.

The standard technique to access such individual eigenvalues is to use the spectral

kernel. Once the spectral kernel is obtained, one can give an analytic expression of the

distribution. Moreover, by combining Nyström-type (quadrature) evaluation of Fredholm

determinants and Pfaffians, one can numerically evaluate the distribution of individual

eigenvalues. Damgaard and one of the authors (S.M.N.) have previously derived analytic

expressions of such individual eigenvalue distributions for chiral RM ensembles at three

Dyson indices β and with scaled quark mass parameters {µf}, initially by the shift-of-

variable method [18, 19] and later by the Nyström-type evaluation of Fredholm determi-

nants and Pfaffians of the spectral kernels [20]. There, technical difficulties have prevented

us from obtaining analytic formulas for the chiral GSE (β = 4) with even numbers of

massless flavors and for the chiral GOE (β = 1) with even values of the topological charge.

Especially, the former restriction is frustrating, as it obstructs applications to the SU(2)

systems with NF = 8 and 12 staggered flavors that are popular lattice settings of walking

technicolor candidates. Because of this reason, the Monte Carlo method with finite-size

matrices was used in [17] to generate the spectral distribution of the RM side in their

analysis of SU(2) NF = 8 system. The purpose of this paper is to lift this restriction by

providing an analytic formula for the conditional gap probability, a.k.a. the Janossy density,

that interpolates the ordinary determinantal or Pfaffian formula for the k-point correlation

function and the Fredholm determinant/Pfaffian expression for the gap probability. Then

our formula is numerically evaluated very efficiently by the Nyström-type method. As an

application of our result, the low-lying Dirac spectra of the SU(2) lattice gauge theory with

NF = 8 staggered flavors are fitted to the derived RM prediction.1

This paper is organized as follows. In section 2 we start by reviewing known formulas

on the spectral-statistical distributions of chiral RMTs and their Janossy densities. In

1We shall use the same data as [17] in this paper, but there are major differences in our analysis

from [13]. Our lattice data is obtained with the unimproved staggered fermion action and suffers from large

taste breaking effects. Consequently, we do not observe the 4-fold degeneracy characteristic of the staggered

tastes, and the lightest of these corresponds to 2 flavors. Moreover, due to the Kramers degeneracy of the

SU(2) Dirac operator, the degeneracy of the lightest fermion modes are 4-fold, to which we must compare

the prediction of RMT with NF = 4 instead of NF = 8.
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section 3 we present a formula for the individual eigenvalue distributions suited for precise

numerical evaluation by the Nyström-type method. Specifically, we shall provide numerical

data of p1(x), . . . , p4(x) for the chiral GSE with NF = 4 and 8 degenerate massive flavors. In

section 4 we determine the values of chiral condensate of the SU(2) system with NF = 8 the

first eigenvalue distribution of the corresponding chiral GSE. Conclusions and discussions

on feasible applications of our results are presented in section 5. In order to avoid plethora

of formulas in RMT and of lattice details in the main text, some of them are relocated to

the appendices.

2 Fredholm determinants and Pfaffians for chiral Gaussian random ma-

trix ensembles

In this section, we will summarize some necessary ingredients about the chiral random ma-

trix ensembles, and derive our main formulae for the Fredholm determinants and Pfaffians

of Gaussian chiral random matrix ensembles.

2.1 Gaussian chiral random matrix ensembles and the microscopic limit

Consider N×(N+ν) matrices W with W ∈ RN×(N+ν), W ∈ CN×(N+ν), or W ∈ HN×(N+ν).

Each ensemble is labelled by the Dyson index β = 1, 2, 4, respectively. The non-negative

integer ν denotes the corank of the matrix H =
(

0 W
W † 0

)
and will correspond to the topo-

logical charge when H is interpreted as modelling Dirac operator of a gauge theory [21]. Let

ZN,β,ν({ma}) be the partition function for the Gaussian chiral random matrix ensembles

with α parameters ma (a = 1, . . . , α), which will correspond to quark masses, such that

ZN,β,ν({ma}) =

∫
dW e−β tr(W †W )

α∏
a=1

det

(
ma iW

iW † ma

)
, (2.1)

where det stands for the determinant for β = 1, 2 and the quaternionic determinant (qdet)

for β = 4. In particular for β = 4 it is understood that twofold degenerated eigenvalues

in the determinant are only counted once. In terms of eigenvalues {xi} for the Wishart

matrix W †W , i.e. the squares of non-zero eigenvalues {±λi} of the Hermitian matrix H,

ZN,β,ν({ma}) is expressed as follows:

ZN,β,ν({ma}) =

(
α∏
a=1

mν
a

)∫ ∞
0
· · ·
∫ ∞

0

N∏
i=1

(
dxi x

β(ν+1)
2
−1

i e−βxi
α∏
a=1

(xi +m2
a)

)

×
N∏
i>j

|xi − xj |β . (2.2)

Likewise the p-level correlation function R
(p)
N,β,ν(λ1, . . . , λp; {ma}) of the Hermitian matrix

H is defined by

R
(p)
N,β,ν(λ1, . . . , λp; {ma})

=

(
2p

p∏
j=1

|λj |

)
σ

(p)
N,β,ν(λ2

1, . . . , λ
2
p; {ma}), (2.3)

– 4 –
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σ
(p)
N,β,ν(x1, . . . , xp; {ma})

=
Σ

(p)
N,β,ν(x1, . . . , xp; {ma})

Σ
(0)
N,β,ν({ma})

, (2.4)

Σ
(p)
N,β,ν(x1, . . . , xp; {ma})

=
1

(N−p)!

∫ ∞
0
dxp+1 · · ·

∫ ∞
0
dxN

N∏
i=1

(
x
β(ν+1)

2
−1

i e−βxi
α∏
a=1

(xi +m2
a)

)
N∏
i>j

|xi − xj |β .

(2.5)

Here we introduce variables zj ’s such that

zj =

{
−m2

j , j = 1, . . . , α

xj−α, j = α+ 1, . . . α+ p
. (2.6)

The p-level correlation functions for β = 2 are rewritten as the determinant of the spectral

kernel K(zi, zj) [22–25]:

σ
(p)
N,β=2,ν(x1, . . . , xp; {ma}) =

1

N ! Σ
(0)
N,β=2,ν({ma})

det[K(zi, zj)]
p+α
i,j=1. (2.7)

R
(p)
N (x1, . . . , xp−α; {ma}) is given by the determinant of the scalar kernel [26, 27]. For

β = 1, 4, the skew-orthogonal polynomial method involves the quaternionic determinant

qdet [28] of the quaternionic kernel [29–32]. In particular, p-level correlation functions are

given by (p + α) × (p + α) quaternionic determinants of the quaternionic kernel, which is

rewritten by a 2(p+ α)× 2(p+ α) Pfaffian of its C-number 2× 2 representative (denoted

by the same K(zi, zj) for notational simplicity),

σ
(p)
N,β=(1,4),ν(x1, . . . , xp; {ma}) =

1

N ! Σ
(0)
N,β=1,4,ν({ma})

qdet[K(zi, zj)]
p+α
i,j=1

=
1

N ! Σ
(0)
N,β=1,4,ν({ma})

Pf
(
Z[K(zi, zj)]

p+α
i,j=1

)
, (2.8)

where Z = iσ2 ⊗ Ip+α stands for the skew-unit matrix Z2 = −I2(p+α).

Now we will consider the asymptotic limit:

N →∞, xi, ma → 0, ζi =
√

8Nxi, and µa =
√

8Nma : fixed. (2.9)

This limit corresponds the microscopic limit of the QCD-like theory on a box of volume V

such that

V →∞, ma → 0, µa = ΣV ma : fixed, (2.10)

where Σ stands for the chiral condensate in the chiral limit.

– 5 –
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In this asymptotic limit (2.9), the scaled p-level correlation function

R
(p)
β=2,ν(ζ1, . . . , ζp; {µa}) for the chiral GUE with 2α dynamical quarks whose masses

are doubly degenerated µa = µa+α (a = 1, . . . , α)2 is found as follows [26, 27, 31–33]:

R
(p)
β=2,ν(ζ1, . . . , ζp; {µa})

=
1

Zβ=2,ν({µa})
det

 [K−−(µa, µb)]a,b=1,...,α [K−+(ζi, µb)] i=1,...,p
b=1,...,α

[K+−(µa, ζj)]a=1,...,α
j=1,...,p

[K++(ζi, ζj)]i,j=1,...,p

 , (2.11)

K++(ζ, ζ ′) =

√
ζζ ′

ζ ′ 2 − ζ2
[Jν(ζ)ζ ′Jν+1(ζ ′)− Jν(ζ ′)ζJν+1(ζ)],

K++(ζ, ζ) =
ζ

2
[Jν(ζ)2 + Jν+1(ζ)2],

K+−(ζ, µ′) =
−
√
ζµ′

−µ′ 2 − ζ2
[Jν(ζ)(−µ′)Iν+1(µ′)− Iν(µ′)ζJν+1(ζ)],

K−+(µ, ζ ′) =
−
√
µζ ′

ζ ′ 2 + µ2
[Iν(µ)ζ ′Jν+1(ζ ′)− Jν(ζ ′)(−µ)Iν+1(µ)],

K−−(µ, µ′) =

√
µµ′

µ′ 2 − µ2
[Iν(µ)µ′Iν+1(µ′)− Iν(µ′)µIν+1(µ)],

K−−(µ, µ) =
µ

2
[Iν(µ)2 − Iν+1(µ)2], Zβ=2,ν(µ1, . . . , µα) = det

(
[K−−(µa, µb)]a,b=1,...,α

)
,

(2.12)

where Jν(x) and Iν(x) denote the Bessel and the modified Bessel functions, respectively,

Iν(x) = i−νJν(ix) =

∞∑
m=0

1

m!Γ(m+ ν + 1)

(x
2

)2m+ν
. (2.13)

For β = 4, the scaled p-level correlation function in the asymptotic limit (2.9) is found

for NF = 4α quadruply degenerated flavors µa = µa+α = µa+2α = µa+3α (a = 1, . . . , α)

and NF = 2α doubly degenerated flavors µa = µa+α (a = 1, . . . , α), manifestly in [30].

R
(p)
β=4,ν(ζ1, . . . , ζp; {µa}) =

1

Zβ=4,ν({µa})
Pf[ZKij ]. (2.14)

Explicit expressions of matrix elements of the spectral kernels3 ZKij are summarized in

appendix A.

2.2 Individual eigenvalue distributions

We now focus on the individual distribution of the kth smallest eigenvalue for the chiral

random matrix ensembles [34]. There are various techniques to analyze the gap prob-

abilities [35, 36] such as linear differential equations [37, 38] or Painlevé transcendental

2In [26], an alternative representation of the p-level correlation function R(p)(ζ1, . . . , ζp; {µa}) is also

found for general mass parameters. (See eq. (B.5) in appendix B.1.)
3An explicit formula for the p-level correlation function is known as well for the chiral GOE (β = 1) [30],

but the convergence of the Nyström-type discretization of the Fredholm Pfaffian is not guaranteed due to

the discontinuity of sgn(ζ − ζ′) in its kernel elements. To avoid such analytical difficulty, we will focus

on the study of the Fredholm Pfaffian for the chiral GSE, and leave discussions of the chiral GOE for the

future work.

– 6 –
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equations á la Tracy-Widom [39, 40]. An alternative method to find individual distribu-

tion of the kth smallest eigenvalue in the asymptotic limit (2.9) has also been developed

in [19, 41]. (See also [42–47].) The procedure of this method consists of three steps [20]:

1. Relate the joint distribution of the first k eigenvalues to the partition function with

βk + β(ν + 1)/2− 1 additional masses and a fixed topological charge 2/β + 1.

2. Replace the partition function by the microscopically-scaled form [29, 30, 33, 48] by

taking the asymptotic limit (2.9).

3. Integrate over the scaled variables ζi (i = 1, . . . , k) in a cell 0 ≤ ζ1 ≤ · · · ≤ ζk−1 ≤ ζk.

On actual implementation of the above method, the numerical integration over k scaled

variables in the third step becomes resource-consuming. To circumvent such technical

issue, we will consider Fredholm determinants and Pfaffians for the chiral random matrix

ensembles with α mass parameters as the generating function of the joint distribution of the

first k eigenvalues, and utilize the quadrature method [49] to evaluate them numerically [50–

53]. In this section, we will derive a compact formula4 of Fredholm determinants and

Pfaffians which will be efficient for numerical computations.

Let PN+α,β,ν(x1, . . . , xN+α) be the distribution of the probability for all eigenvalues of

the rank N matrix,

PN+α,β,ν(x1, . . . , xN+α) =
1

N !C
(0)
N,β,ν({ma})

N+α∏
i=1

x
β(ν+1)

2
−1

i e−βxi
N+α∏
i>j

|xi − xj |β . (2.15)

The xi-independent prefactor C
(0)
N,β,ν({ma}) is defined so that PN+α,β,ν(x1, . . . , xN+α) obeys

the normalization condition.∫ ∞
−∞
· · ·
∫ ∞
−∞

dx1 · · · dxN+α PN+α,β,ν(x1, . . . , xN+α)
α∏
a=1

χ{−m2
a}(xa)

N+α∏
i=α+1

χ[0,∞](xi) = 1,

(2.16)

where χI(x) stands for the characteristic function on I ⊂ R. If I is a line segment [a, b]

(a < b) or a semi-infinite line, the characteristic function is given by

χI(x) =

{
1 (x ∈ I)

0 (x 6∈ I)
. (2.17)

If I consists of one point {y},

χ{y}(x) = δ(x− y). (2.18)

4In [54, 55], what we call E(k; I;ma) with k = 0, α = 1 for the chiral GUE (β = 2) has essentially been

worked out. We would like to thank P. Forrester for kindly reminding us of their works.

– 7 –
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Consider the joint probability E(k; I; {ma}) that one finds exactly k eigenvalues on an

interval I along the real axis and α eigenvalues in R<0 such that

E(k; I; {ma}) =
(N + α)!

k!α!(N − k)!

∫ ∞
−∞
· · ·
∫ ∞
−∞

dx1 · · · dxN+α PN+α,β,ν(x1, . . . , xN+α)

×
α∏
a=1

χ{−m2
a}(xa)

α+k∏
j=α+1

χI(xj)

N+α∏
l=α+k+1

(1− χI(xl)). (2.19)

Such a joint probability E(k; I; {ma}) is known as an analytic continuation of the Janossy

density [24, 56, 57]. (See appendix C for the definition of the Janossy density.) The

cumulative distribution Fk(s) and the probability distribution pk(s) of the kth smallest

positive eigenvalue are expressed by

Fk(s) = 1−
k−1∑
`=0

E(`; [0, s]; {ma}), pk(s) =
∂

∂s
Fk(s). (2.20)

In the next subsections, we shall show that the generating function τ(z; I; {ma}) of the

probability E(k; I; {ma}) given by

τ(z; I; {ma}) =

N∑
k=0

(1− z)kE(k; I; {ma})

=

〈
N+α∑
i=1

( α∏
a=1

δ(xi +m2
a)
∏
j( 6=i)

(1− zχI(xj) )
)〉

=
(N + α)!

α!N !

∫ ∞
−∞
· · ·
∫ ∞
−∞

dx1 · · · dxN+α PN+α,β,ν(x1, . . . , xN+α)

×
α∏
a=1

χ{−m2
a}(xa)

N+α∏
j=α+1

(1− zχI(xj)) (2.21)

is rewritten as a block-decomposed Fredholm determinant or Pfaffian of the spectral kernels

in (2.7) or (2.8).

2.3 Fredholm determinant for chiral Gaussian unitary ensemble

We start by sketching the proof for the simplest case β = 2, α = 1, m2
1 = −y:

τ(z; I;
√
−y)

= (N + 1)

(∫
−z
∫
I
dx2

)
· · ·
(∫
−z
∫
I
dxN+1

)
PN+1,β=2,ν(y, x2, . . . , xN+1)

= (N + 1)

∫
dx2 · · · dxN+1 PN+1,β=2,ν(y, x2, · · · , xN+1)

− (N + 1)Nz

∫
I
dx2

∫
dx3 · · · dxN+1 PN+1,β=2,ν(y, x2, x3, · · · , xN+1)

+ (N+1)
N(N−1)

2!
z2

∫
I
dx2dx3

∫
dx4 · · · dxN+1PN+1,β=2,ν(y, x2, x3, x4, · · · , xN+1)

− · · ·

– 8 –
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= σ
(0)
N,β=2,ν(

√
−y)− z

∫
I
dx2 σ

(1)
N,β=2,ν(x2;

√
−y)

+
z2

2!

∫
I
dx2dx3 σ

(2)
N,β=2,ν(x2, x3;

√
−y)

− z3

3!

∫
I
dx2dx3dx4 σ

(3)
N,β=2,ν(x2, x3, x4;

√
−y) + · · · . (2.22)

To rewrite correlation functions σ
(k)
N,β=2,ν in terms of the spectral kernel (2.25), we will

prepare some notations such as5

(f ◦ g)(x, x′) =

∫
I
dx′′ f(x, x′′)g(x′′, x′), tr f =

∫
I
dx f(x, x),

n︷ ︸︸ ︷
K ◦K ◦ · · · ◦K = Kn.

(2.23)

In addition, we assume that the quadrature discretization of the Riemann integral on I to

be well-defined in the continuum limit M →∞ (which is always implicit below),

{x1, . . . , xM} ∈ I, dx1, . . . , dxM > 0,

M∑
i=1

f(xi)dxi
M→∞−→

∫
I
f(x)dx. (2.24)

We further introduce following notations for the block decomposition of the spectral kernel

integrated over I.

κ = K(−y,−y), k =
[√

dxiK(xi,−y)
]
i=1,...,M

,

kT =
[√

dxiK(−y, xj)
]
j=1,...,M

, K =
[√

dxiK(xi, xj)
√
dxj

]
i,j=1,...,M

. (2.25)

Adopting eq. (2.7) and these notations, one can rewrite the Fredholm determinant

τ(z; I;
√
−y) in terms of the block-decomposed scalar kernel as follows:

τ(z; I;
√
−y) · ZN,β=2,ν(

√
−y)

= K(−y,−y)− z
∫
I
dx2 det

∣∣∣∣∣K(−y,−y) K(−y, x2)

K(x2,−y) K(x2, x2)

∣∣∣∣∣
+
z2

2!

∫
I
dx2dx3 det

∣∣∣∣∣∣∣
K(−y,−y) K(−y, x2) K(−y, x3)

K(x2,−y) K(x2, x2) K(x2, x3)

K(x3,−y) K(x3, x2) K(x3, x3)

∣∣∣∣∣∣∣
− z3

3!

∫
I
dx2dx3dx4 det

∣∣∣∣∣∣∣∣∣
K(−y,−y) K(−y, x2) K(y, x3) K(−y, x4)

K(x2,−y) K(x2, x2) K(x2, x3) K(x2, x4)

K(x3,−y) K(x3, x2) K(x3, x3) K(x3, x4)

K(x4,−y) K(x4, x2) K(x4, x3) K(x4, x4)

∣∣∣∣∣∣∣∣∣+ · · ·

= κ− z
{
κ trK − kTk

}
+
z2

2!

{
κ(trK)2 − κ trK2 − 2kTk trK + 2kTKk

}
− z3

3!

{
κ(trK)3 − 3κ trK trK2 + 2κ trK3 − 3kTk(trK)2 + 3kTk trK2

− 6kTKk trK + 6kTK2k
}

+ · · · .
5It is noted that K ◦K = K holds on R+, but K ◦K 6= K on the interval I.
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Reorganizing summations, one finds

τ(z; I;
√
−y) · ZN,β=2,ν({−y})

= κ

{
1− tr zK +

1

2!
(tr zK)2 − 1

3!
(tr zK)3 + · · ·

}
×
{

1− 1

2
tr(zK)2 + · · ·

}{
1− 1

3
tr(zK)3 + · · ·

}
· · ·

+ zkTk

{
1− tr zK +

1

2!
(tr zK)2 − · · ·

}{
1− 1

2
tr(zK)2 + · · ·

}
· · ·

+ z2kTKk {1− tr zK + · · · } · · ·

+ z3kTK2k {1− · · · } · · ·

+ · · ·

=
{
κ+ zkT(I + zK + (zK)2 + · · · )k

}
× exp

(
−tr zK − 1

2
tr(zK)2 − 1

3
tr(zK)3 − 1

4
tr(zK)4 − · · ·

)
=
{
κ+ zkT(I− zK)−1k

}
det(I− zK) = − det

∣∣∣∣∣ −κ −
√
zkT

−
√
zk I− zK

∣∣∣∣∣ . (2.26)

Thus we obtain a compact expression of τ(z; I;
√
−y) in terms of the Fredholm determinant.

The generalization to the case with α eigenvalues lying at ya (a = 1, . . . , α) proceeds

in the same way as the derivation of eq. (2.26), leading to

τ(z; I; {
√
−yq}) =

det

∣∣∣∣∣ −κ −
√
zkT

−
√
zk I− zK

∣∣∣∣∣
det(−κ)

:=
detK(z)

det(−κ)
, (2.27)

where the notation for the block decomposition of kernels (2.25) is generalized as

κ = [K(−ya,−yb)]a,b=1,...,α , k =
[√

dxiK(xi,−yb)
]
i=1,...,M
b=1,...,α

,

kT =
[
K(−ya, xj)

√
dxj

]
a=1,...,α
j=1,...,M

, K =
[√

dxiK(xi, xj)
√
dxj

]
i,j=1,...,M

. (2.28)

The numerator K(z) clearly interpolates the (ordinary) determinantal form for the k-level

correlation function det κ in the case I → ∅ (for which k,K → 0) and the Fredholm

determinantal form det (I− zK) for the generating function of the gap probability in the

‘quenched’ limit ya →∞ (for which κ→ I and k→ 0).

For ya > 0 and ya ∈ I, τ(1; I; {
√
−ya}) represents the Janossy density Jα,I({ya})

defined as the probability of finding no eigenvalue in the interval I except for the ones at

designated points ya ∈ I (a = 1, . . . , α), for the (classical) Laguerre unitary ensemble. On

the other hand, after an analytic continuation to ya = −m2
a < 0 and setting I = [0, s],
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τ(1; I; {ma}) represents the probability E(0; [0, s]; {ma}) of finding no eigenvalue smaller

than s for the massive Laguerre unitary ensemble (see discussions in appendix C.2).

Finally, changing the eigenvalue variables back to the chiral Gaussian and taking the

asymptotic limit (2.9), eq. (2.27) leads to

τ(z; I; {µa}) =

det

∣∣∣∣∣ −κ −
√
zkT

−
√
zk I− zK

∣∣∣∣∣
det(−κ)

, (2.29)

with the kernel elements given by their scaled forms (2.12),

κ = [K−−(µa, µb)]a,b=1,··· ,α , k =
[√

dζiK+−(ζi, µb)
]
i=1,...,M
b=1,...,α

,

kT =
[√

dζiK−+(µa, ζj)
]
a=1,...,α
j=1,...,M

, K =
[√

dζiK++(ζi, ζj)
√
dζj

]
i,j=1,...,M

. (2.30)

2.4 Fredholm Pfaffian for chiral Gaussian symplectic ensemble

Generalization of the result of the previous subsection to the chiral GOE and GSE is

straightforward: one finds the quaternionic determinant formula simply by replacing K

with the quaternionic kernel and “det” with “qdet” simultaneously, because the quater-

nionic determinant shares the same linear algebraic properties which are utilized in the

derivation of the determinant formula (2.29). In particular for the chiral GSE, one can use

the explicit formulae of the correlation functions and spectral kernels for NF = 4α and

NF = 2α in [30]. (See appendix A.) Indeed, applying the correlation functions R(p) in

appendix A to eq. (2.22) and repeating the same steps leading to zeq. (2.29), one finds the

following Pfaffian formula

τ(z; I; {µa}) =

qdet

∣∣∣∣∣ −κ −
√
zkT

−
√
zk I− zK

∣∣∣∣∣
qdet(−κ)

=
Pf [ZJ2α − Z(z ◦K)]

Pf
[
−ZK(0)

]
=

√
det [J2α − z ◦K]√

detK(0)
:=

√
detK(z)√
detK(0)

, (2.31)

where

J2α = diag(

2α︷ ︸︸ ︷
0, · · · , 0, 1, 1, · · · ). (2.32)

The matrix elements SAB, DAB, and IAB (A,B = ±) of the quaternionic kernel K are

given in eqs. (A.2)–(A.4).

For the quadruply degenerated case NF = 4α, z ◦K with µa (a = 1, . . . , α) is given by

z ◦K =

(
[K−−(µa, µb)]

√
z
[
K+−(µa, ζj)

√
dζj
]

√
z
[√
dζiK−+(ζi, µb)

]
z
[√
dζiK++(ζi, ζj)

√
dζj
]
)
, (2.33)
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where Z = iσ2 ⊗ Iα+M , and

KAB =

(
[−SAB(ξA, ξB)] [−IAB(ξA, ξB)]

[DAB(ξA, ξB)] [−ST
AB(ξA, ξB)]

)
,

(ξ+, dξ+) = (ζ, dζ), (ξ−, dξ−) = (µ, 1). (2.34)

For the doubly degenerated case NF = 2α, z ◦K for even α with ya = −µ2
a (a = 1, . . . , α)

is given by

Z(z ◦K) =

 [I−−(µa, µb)]
√
z[I−+(µa, ζj)

√
dζj ]

√
z
[
S−+(µa, ζj)

√
dζj
]

−
√
z[
√
dζiI

T
−+(µb, ζi)] z[

√
dζiI++(ζi, ζj)

√
dζj ] z[

√
dζiS++(ζi, ζj)

√
dζj ]

−
√
z[
√
dζiS

T
−+(µb, ζi)] −z[

√
dζiS

T
++(ζj , ζi)

√
dζj ] z[

√
dζjD++(ζi, ζj)

√
dζi]

 , (2.35)

and z ◦K for odd α is by

Z(z ◦K) (2.36)

=


[I−−(µa, µb)] [Q−(µa)]

√
z[I−+(µa, ζj)

√
dζj ]

√
z
[
S−+(µa, ζj)

√
dζj
]

−[QT
−(µb)] 0 −

√
z[QT

+(ζj)
√
dζj ] −

√
z[PT

+ (ζj)
√
dζj ]

−
√
z[
√
dζiI

T
−+(µb, ζi)]

√
z[
√
dζiQ+(ζi)] z[

√
dζiI++(ζi, ζj)

√
dζj ] z[

√
dζiS++(ζi, ζj)

√
dζj ]

−
√
z[
√
dζiS

T
−+(µb, ζi)]

√
z
[√
dζiP+(ζi)

]
−z[
√
dζiS

T
++(ζj , ζi)

√
dζj ] z[

√
dζiD++(ζi, ζj)

√
dζj ]

 .

Matrix elements of z ◦K in the asymptotic limit (2.9) are summarized in eqs. (A.2)–(A.4),

and (A.8)–(A.9).

In case that some of the masses µa’s are degenerated, one should adopt the confluent

limit of the spectral kernel. Some details of the confluent limit of the spectral kernel is

discussed in appendix B.

3 Numerical evaluation of the Janossy density via the Nyström-type

discretization

In evaluating the Fredholm determinant (2.27) and Pfaffian (2.31) numerically, the

Nyström-type discretization proves to be a highly efficient method6 [58, 59].This numerical

method is based on the quadrature rule (see a brief summary in appendix E), and in semi-

nal works by F. Bornemann, it is shown that the Nyström-type discretization of Fredholm

determinants of integral operators of trace class (i.e. for unitary and symplectic ensembles)

converges exponentially as the order of the discretization grows. In the following, we em-

ploy the Gauss-Legendre quadrature rule of order M with the nodes ζi and the weights

wi = dζi (i = 1, . . . ,M) given in eq. (E.5).

6We will compare our results with the Monte Carlo simulations to examine the efficiency of this method.

See appendix F on details of the Monte Carlo simulation.
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Figure 2. Plots of F1(s) (left) and p1(s) (right) for the chiral GUE with Nf = 2 doubly-degenerated

masses µ1 = 0.1 and the topological charge ν = 0 are depicted. In this computation, the quadrature

of order M = 5 is used to discretize the Fredholm determinant (3.1). On both plots, data obtained

with Monte Carlo simulation with matrix rank N = 1000 is overlaid (red symbol with error bar,

though the error in the left panel is hard to recognize by eye).

3.1 Chiral GUE with doubly degenerated masses NF = 2α

The Nyström-type discretization of the Fredholm determinant for the individual eigenvalue

distribution with β = 2 and NF = 2α is given as follows:

τ(z; [0, s]; {µa})

= det

 −[K−−(µa, µb)]a,b=1,...α −
√
z
[
K−+(µa, ζj)

√
wj
]
a=1,...,α
j=1,...,M

−
√
z
[√
wiK+−(ζi, µb)

]
i=1,...,M
b=1,...,M

IM − z
[√
wiK++(ζi, ζj)

√
wj
]
i,j=1,...,M


/

det(−[K−−(µa, µb)]a,b=1,...α), (3.1)

where the matrix elements KAB are found in eq. (2.12).

We will evaluate F1(s) = 1 − τ(1; [0, s];µ1) and p1(s) = ∂sF1(s) using the expres-

sion (3.1) and compare with the Monte Carlo simulation. For α = 1 with µ1 = 0.1 and the

topological charge ν = 0, we obtain the numerical plots of F1(s) and p1(s) in figure 2 for

the rank M = 5 of the Gaussian quadrature and find a good agreement with the Monte

Carlo simulation with the matrix rank N = 1000.

3.2 Chiral GSE with quadruply degenerated masses NF = 4α

For β = 4 and with NF = 4α, the Nyström-type discretization of the Fredholm Pfaffian is

given by

τ(z; [0, s]; {µa}) =
| det1/2(K(z))|
| det1/2(K−−)|

,

K(z) =

(
− [K−−(µa, µb)] −

√
z
[
K+−(µa, ζj)

√
wj
]

−
√
z
[√
wiK−+(ζi, µb)

]
I2M − z

[√
wiK++(ζi, ζj)

√
wj
]
)
, (3.2)

where the matrix elements KAB are found in eqs. (A.2)–(A.4).
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Figure 3. F1(s) is computed for the chiral GSE with NF = 4 (α = 1) quadruply-degenerated

masses µ1 = 0.1 and the topological charge ν = 0 in two ways. In the top panel, the Nyström-type

discretization of order M = 50 is applied (black dot) and the hybrid Monte Carlo simulation is

applied with the random rank N = 2000, FHMC
1 (s) (green cross). The error of the HMC result,

which is not shown in the top panel, is smaller than the symbols. The bottom left panel shows the

difference of these two methods, F1(s) − FHMC
1 (s) with N = 250, 1000, 2000. The computational

results of the hybrid Monte Carlo simulation converges to that of the Nyström-type discretization as

N grows. The errors plotted come from the Monte Carlo result. The relative difference normalized

by the Nyström-type is also plotted in in the bottom right panel. Note that the relative difference

looses its meaning for s . 2 as the Nyström-type result becomes smaller than the Monte Carlo error.

NF = 4. The numerical plot of F1(s) for NF = 4 with the quadruply degenerated mass

µ1 = 0.1 and the topological charge ν = 0 is depicted in black dots in figure 3 top. In this

computation we have chosen M = 50. In the same figure, the result of the hybrid Monte

Carlo simulation FHMC
1 (s) of the chiral random matrix ensemble (2.2) with the matrix rank

N = 2000 is shown in green dots as an overlay.

In order to verify the numerical computation with the Nyström-type discretization, we

closely looked at the difference F1(s)−FHMC
1 (s) for matrix ranks N = 250, 1000, 2000. Fig-

ure 3 bottom shows that the computational results of the hybrid Monte Carlo simulation

indeed converge to the Nyström-type discretization as N grows, confirming that the nu-

merical evaluation of F1(s) by the Nyström-type discretization at M = 50 is good enough.

The generalized gap probability Ek(s) := E(k; [0, s]; {µa}) in eq. (2.19) is given by

Ek(s) =
(−1)k

k!

∂k

∂zk
τ(z; [0, s]; {µa})

∣∣∣
z=1

. (3.3)

– 14 –



J
H
E
P
0
8
(
2
0
1
9
)
0
5
3

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12  14  16

µ=0.1µ=0.1

k=1 k=2 k=3

s

Nyström−type and HMC (Nf=4)
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Figure 4. Fk(s) (k = 1, 2, 3) for NF = 4 quadruply-degenerated mass parameters µ1 = 0.1 and the

topological charge ν = 0 together with Monte Carlo result. Black dot: Nyström-type discretization

of order M = 50. Green cross: hybrid Monte Carlo simulation with the random matrix rank

N = 2000.

The z-derivatives of τ(z; [0, s]; {µa}) are evaluated directly by the Taylor expansion of the

determinant, and the explicit expressions of Ek(s)’s as the sum of trace factors are listed in

appendix D. Numerical computations for Fk(s) for 0 ≤ s ≤ 16 are depicted in figure 4, and

a good agreement is observed with the computations of the hybrid Monte Carlo simulation

with N = 2000.

NF = 8. Numerical plots of Fk(s) and pk(s) = ∂sFk(s) for NF = 8 (α = 2) with 8-fold

degenerated mass µ = µ1 = µ2 and the topological charge ν = 0, computed at M = 128,

are depicted in figures 5. The computed numerics of Fk(s) are appended as Supplementary

Material because this case is practically important within our application to the two-color

lattice QCD with staggered quarks; the case with NF = 4 (α = 1) doubtlessly has its

chiral symmetry broken as in the ordinary QCD, and those with Nf ≥ 12 (α ≥ 3) have

negative 1-loop β-function coefficients β0 = (11NC −2NF )/3 and are IR free. Accordingly,

NF = 8 is the only case which evokes the question of whether its nature is either QCD-like,

conformal, or walking (which would nominate the model as a possible candidate for the

technicolor scenario), and motivates us to compare its Dirac spectrum to the massive chiral

GSE prediction so as to confirm or exclude if it is QCD-like.

3.3 Chiral GSE with doubly degenerated masses NF = 2α

For β = 4 and with NF = 2α, the quaternionic kernel for Janossy density of the β = 4

ensemble is treated independently for even and odd α.
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Figure 5. Scaled mass parameter (µ) dependence of [left panels] cumulative distributions Fk(s) and

[right panels] probability distributions pk(s) of the four smallest unfolded eigenvalues k = 1, 2, 3, 4 of

the massive chiral GSE with NF = 8 degenerate flavors and the topological charge ν = 0, computed

at M = 128. In the upper panels, mass parameters are chosen at µ = 0 (black, NF = 0 with

ν = 4), 0.5, · · · (step 0.5), 10, · · · (step 1), 20, · · · (step 2), 30, · · · (step 5), 60, · · · (step 10), 100, 200

(red to purple),∞ (gray, NF = 0 with ν = 0). The lower panels are interpolations of the upper ones.

NF = 2. For the case of odd α, the Nyström-type discretization of τ(z; [0, s]; {µa}) yields

τ(z; [0, s]; {µa})

=

∣∣∣det1/2 (K(z))
∣∣∣∣∣∣det1/2

(
K(0)

)∣∣∣ ,

K(z) =


IM − z[

√
wiwjS++(xi, xj)] −z[

√
wiwjI++(xi, xj)]

√
z[
√
wjQ+(xj)]

√
z[I−+(µa, xj)]

z[
√
wiwjD++(xi, xj)] IM − z[

√
wiwjS

T
++(xj , xi)]

√
z[
√
wjP+(xj)]

√
z[
√
wjS−+(µa, xj)]

−
√
z
[√
wiS

T
−+(µb, xi)

]
−
√
z[
√
wiI

T
−+(µb, xi)] −[Q−(µb)] −[I−−(µa, µb)]

−
√
z
[√
wiP

T
+ (xi)

]
−[
√
wiQ

T
+(xi)] 0 −[QT

−(µa)]

 ,

K(0) =

(
−[Q−(µb)] −[I−−(µa, µb)]

0 −[QT
−(µa)]

)
, (3.4)

where the matrix elements are found in eqs. (A.2)–(A.4) and (A.8)–(A.9).

F1(s) for α = 1 (i.e. NF = 2) with doubly degenerated mass µ1 = 0.1 and the topo-

logical charge ν = 0 is evaluated numerically by the Nyström-type discretization of order

M = 50. Plots are depicted in figure 6 (black dots). The hybrid Monte Carlo simulation

– 16 –



J
H
E
P
0
8
(
2
0
1
9
)
0
5
3

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10

µ=0.1

s

Nyström−type and HMC (Nf=2)

this work: M=50
HMC: N=2000

−0.006

−0.004

−0.002

 0

 0.002

 0.004

 0  1  2  3  4  5  6  7

M=50

µ=0.1

s

Nyström−type − HMC (Nf=2)

N=2000
N=1000

N=250

−0.006

−0.004

−0.002

 0

 0.002

 0.004

 2  3  4  5  6  7

M=50

µ=0.1

s

Nyström−type − HMC (Nf=2) [relative]

N=2000
N=1000
N=250

Figure 6. The same plot as figure 3 but with doubly-degenerated masses µ1 = 0.1 (NF = 2) and

the topological charge ν = 0. F1(s) for the β = 4 ensemble is evaluated in two ways. Top panel:

The Nyström-type discretization is applied of order M = 50 (black dots) and the hybrid Monte

Carlo simulation is applied with the random matrix rank N = 2000 (green cross), for which the

statistical errors are smaller than the symbols and not shown in the plot. Bottom panels: Difference

between Nyström-type discretization and hybrid Monte Carlo with several values of matrix rank N .

FHMC
1 (s) of the chiral random matrix ensemble (2.2) with the matrix rank N = 1000 is

depicted (green dots) in figure 6 as an overlay.

The confluent limit for NF = 2 + 2 + 2 + 2. The next example is the chiral GSE

for NF = 2 + 2 + 2 + 2 (i.e. α = 4) in the complete confluent limit. The Nyström-type

discretization of E0(s) of order M is given by

E0(s) =

∣∣∣det1/2 (K(z = 1))
∣∣∣

| det1/2K(0)|
, K(z = 1) =

(
S1 −I
−D S2

)
, (3.5)

S1 =


IM − [

√
wiwjS++(ζi, ζj)] [

√
wjI

(3,0)
−+ (µ, ζj)] [

√
wjI

(2,0)
−+ (µ, ζj)]

−[
√
wiS

(2,0)
−+ (µ, ζ)] −I(2,3)

−− (µ, µ) 0

[
√
wiS

(3,0)
−+ (µ, ζ)] 0 −I(2,3)

−− (µ, µ)

 ,

I =


[
√
wiwjI++(ζi, ζj)] −[

√
wjI

(1,0)
−+ (µ, ζj)] −[

√
wjI

(0,0)
−+ (µ, ζj)]

[
√
wiI

(2,0)
−+ (µ, ζ)] −I(1,2)

−− (µ, µ) −I(0,2)
−− (µ, µ)

−[
√
wiI

(3,0)
−+ (µ, ζ)] I

(1,3)
−− (µ, µ) I

(0,3)
−− (µ, µ)

 ,
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D =


−[
√
wiwjD++(ζi, ζj)] [

√
wjS

(1,0)
−+ (µ, ζj)] [

√
wjS

(0,0)
−+ (µ, ζj)]

[
√
wiS

(0,0)
−+ (µ, ζ)] I

(0,3)
−− (µ, µ) I

(0,2)
−− (µ, µ)

−[
√
wiS

(1,0)
−+ (µ, ζ)] −I(1,3)

−− (µ, µ) −I(1,2)
−− (µ, µ)

 ,

S2 =


IM − [

√
wiwjS++(ζi, ζj)] −[

√
wjS

(1,0)
−+ (µ, ζj)] −[

√
wjS

(0,0)
−+ (µ, ζj)]

−[
√
wiI

(0,0)
−+ (µ, ζ)] −I(0,1)

−− (µ, µ) 0

[
√
wiI

(1,0)
−+ (µ, ζ)] 0 −I(0,1)

−− (µ, µ)

 ,

K(0) =


0 I

(0,1)
−− (µ, µ) I

(0,2)
−− (µ, µ) I

(0,3)
−− (µ, µ)

−I(0,1)
−− (µ, µ) 0 I

(1,2)
−− (µ, µ) I

(1,3)
−− (µ, µ)

−I(0,2)
−− (µ, µ) −I(1,2)

−− (µ, µ) 0 I
(2,3)
−− (µ, µ)

−I(0,3)
−− (µ, µ) −I(1,3)

−− (µ, µ) −I(2,3)
−− (µ, µ) 0

 ,

where the matrix elements SAB, DAB, and IAB (A,B = ±) are found in eqs. (A.2)–(A.4),

and S
(a,b)
AB , D(a,b)AB , and I

(a,b)
AB (A,B = ±) are found in eqs. (B.15)–(B.17).

For the degenerated mass µ = 0.1 and the topological charge ν = 0, we find a good

agreement of F1(s) = 1 − E0(s) with the hybrid Monte Carlo simulation FHMC
1 (s). The

numerical plots are shown in figure 7 (left panel) for M = 50 of the Nyström discretization

of the Fredholm Pfaffian and the hybrid Monte Carlo simulation of the rank N = 2000.

(Black dots: Nyström discretization, Green dots: hybrid Monte Carlo simulation.) The

difference F1(s)−FHMC
1 (s) in figure 7 (right panel) confirms us that the difference reduces

as the rank of matrix grows, and these results confirm us that these numerical computations

are consistent and valid.

By applying the explicit expressions in appendix D, we can evaluate Ek(s)’s numeri-

cally. Plots for Fk(s) in 0 ≤ s ≤ 6 are depicted in figure 8, and we find a good agreement

with the computations of the hybrid Monte Carlo simulation with N = 4000.

4 Application: chiral condensate from lattice data

As an application of our RMT results, we use the Dirac eigenvalues of the SU(2) gauge

theory with NF = 8 quarks in the fundamental representation. A partial analysis of this

system has been presented in [17], where the Monte Carlo method is used to generate the

RMT data. Full analyses using the current RMT result will appear elsewhere [60]. As

stated in the Introduction, we should use the chiral GSE with NF = 4, because due to

the taste breaking effect, the 4-fold degeneracy for the staggered fermions is totally broken

so the number of lightest flavors is in fact NF = 2. Furthermore, the pseudo-reality of

the SU(2) gauge group yields an additional 2-fold degeneracy yields an additional 2-fold

degeneracy, by which NF = 2 is promoted to NF = 4.

The microscopic eigenvalue density is related to the Dirac spectrum through

ζi = λiV Σ, µf = mfV Σ, (4.1)

where λi denotes the eigenvalue of the Dirac operator, Σ the chiral condensate, V the

4-volume, and mf the quark masses. We relate the smallest Dirac eigenvalue distribution
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Figure 7. The same plot as figure 3 but with NF = 8. F1(s) is computed in two ways for the

chiral GSE with NF = 8 doubly-degenerated masses in the complete confluent limit with µ1 = 0.1

and the topological charge ν = 0. Nyström-type discretization of order M = 50 (black dot) and

hybrid Monte Carlo simulation with the random rank N = 4000 are applied (green cross) in the

top panel, and the random rank N = 4000 (green dots in the top figure), respectively. The errors

for HMC is smaller than the symbols and not shown in the plot. The bottom panels show the

difference F1(s) − FHMC
1 (s) for N = 1000, 2000, 4000. As the N grows, the HMC results converge

to the result from Nyström-type discretization. Compared with the previous cases, however, its

convergence is slower.

from lattice simulation through7

pRMT
1 (ζ1;µ)

∣∣∣
ζ1=λ1V Σ, µ=mfV Σ

= platt.
1 (λ̂1; m̂f ). (4.2)

The parameters V̂ , Σ̂ and m̂f are the dimensionless 4-volume, the chiral condensate and

the fermion mass of the SU(2) gauge theory in the lattice unit, respectively. Dimensionful

quantities are λ1 = λ̂1/a, V = a4V̂ , Σ = Σ̂/a3, and mf = m̂f/a, where a is the lattice

spacing. The distribution of the smallest eigenvalue platt.
1 (λ̂1; m̂f ) is determined from lattice

simulation and its normalization is fixed by∫ ∞
0

dλ̂ platt.
1 (λ̂; m̂f ) = 1. (4.3)

7This equation is not valid if the lattice simulation is in the symmetric phase of the chiral symmetry, to

which standard chiral RMT may not apply.
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Figure 8. Plot of Fk(s) in 0 ≤ s ≤ 16 for NF = 8 in the complete confluent limit with µ1 = 0.1

and the topological charge ν = 0. Black dot: Nyström-type discretization of order M = 50. Green

cross: hybrid Monte Carlo simulation with the random matrix rank N = 4000.

As the sole undetermined quantity in eq. (4.2) is the chiral condensate, we can use

this relation to best-fit the value of Σ̂. If the fit does not work, that is, if eq. (4.2)

is not numerically satisfied by any choice of Σ̂, it implies that the chiral symmetry is

restored and the RM description is not applicable. Note that ζ1 and µ are dimensionless

so they are directly related to quantities in the lattice unit: ζ1 = λ1V Σ = λ̂1V̂ Σ̂ and

µ = mfV Σ = m̂f V̂ Σ̂. An integrated version of eq. (4.2) is

F1(s) =

∫ s

0
dζ1p

RMT
1 (ζ1;µ)

∣∣∣
ζ1=λ1V Σ,µ=mfV Σ

=

∫ ŝ

0
dλ̂1p

latt.
1 (λ̂1; m̂f ) (≡ I(ŝ) ), (4.4)

where s = ŝV̂ Σ̂. We use I(ŝ) in the fitting process.

Our lattice setting is the following. We have three different lattice sizes, (T/a) ×
(L/a)3 = 8× 83, 12× 123 and 16× 163. In this paper, we use fermion mass m̂f = amf =

0.010. We use several values of the bare gauge coupling β = 4/g2, for which we use β = 1.1–

1.475. These values are almost the same ones as used in [17]. See table 2 in appendix F

for the details of the lattice data. The topological charge ν is calculated with the APE

smeared [61] configuration with order-a improved (i.e., “clover”) field strength. Note that

this gluonic definition does not give an integer value on a lattice. The obtained values,

however, cluster around integer values so that we can identify configurations with ν = 0.

Eigenvalues and topological charges are calculated for every 10 trajectories.

The details of our fitting procedure is as follows: We divide a given lattice eigenvalue

distribution into Nbin = 25 bins, whose support covers from 0 to 1.3 times the largest

value in the distribution. In addition to the average value and the error in each bin, we

estimate the correlation matrix C between bins by using the jackknife method. Since a

naive estimation of the correlation matrix causes unstable fitting, we use an improved
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Figure 9. Typical example of a good fit (left) and a bad fit (right). The horizontal scale for

the RMT curve is determined by the the best value of the chiral condensate, which is denoted in

the plot.

estimation of the inverse, C−1
imp.. See appendix G for the details. The value of the chiral

condensate Σ̂ is determined by minimizing the correlated χ squared:

χ2(Σ̂) =

Nbin∑
i,j=1

[
I(ŝi)− IRMT(si; Σ̂)

] (
C−1

imp

)
ij

[
I(ŝj)− IRMT(sj ; Σ̂)

]
, (4.5)

where

IRMT(si; Σ̂) = F1(si), with si = ŝiV̂ Σ̂, µ = V̂ Σ̂m̂f . (4.6)

To estimate pRMT
1 (ζ1, µ) with arbitrary ζ1 and µ, which is needed to calculate IRMT(si; Σ̂)

for a given Σ̂, we use interpolations in both ζ1 and µ. We first interpolate in µ and then

in ζ1, with the 4-point interpolation is used for both. Near the boundary of the available

points where the 4-point interpolation is not possible, an interpolation with 3 points or an

extrapolation with 2 points is used as well.

Figure 9 is a typical example of a good fit (indicating the chirally broken phase) and

a bad fit (chirally symmetric phase). In the broken phase, the RMT well describes the

smallest eigenvalue distribution from the lattice data, with a reasonably small value of

χ squared. On the other hand, in the broken phase, the RMT curve can by no means

describe the lattice data. In the figure, the plotted curve is the result with the best value

of Σ̂ = a3Σ. The value of χ squared, however, indicates that the quality of the fit is poor

in the right panel and the RMT result is rejected as fitting ansatz.

It is interesting to note that even though the fit result is unreliable in the symmetric

phase, the obtained value of the chiral condensate is small and consistent with zero, as

should be in the symmetric phase. This is clearly seen in figure 10. We observe that the

larger the bare coupling β = 4/g2 is, the smaller the obtained chiral condensate becomes

and eventually the fit becomes unreliable near the vanishing of the chiral condensate at

around β = 1.4–1.5. In this figure, the unreliable data points, for which χ2 par degrees of

freedom exceeds 1, are plotted with pale colored symbols. Such behavior is also reported

in [17], where the HMC with N = 400 is used to obtain the RMT result.
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Figure 10. Chiral condensate versus bare coupling β = 4/g20 . The pale colored symbols have poor

values of χ2/d.o.f value (> 1).

5 Conclusions and discussions

We have numerically evaluated the kth smallest eigenvalue distributions of chiral random

matrix ensembles with multiple flavors using the Nyström-type method applied to the

Fredholm determinant and Pfaffian describing the Janossy densities. Adopting the com-

pact determinant formulas (2.27) and (2.31) for the Fredholm determinant for the Janossy

densities, we performed numerical computations for the chiral GUE and GSE in the asymp-

totic limit (2.9). One of our goals of these analyses is an application to the two-color QCD

with NF fundamental staggered flavors. For the system of NF = 8 flavors in the funda-

mental representation of SU(2), the distribution of eigenvalues of the Dirac operators is

being studied through the lattice simulation [17].

In the simulation we used, the taste symmetry of the staggered fermions is completely

broken due to the finite lattice spacing, so that the remaining flavor symmetry is merely

NF = 2. In addition to this flavor symmetry, due to the pseudo-reality of the fundamental

representation of the SU(2) gauge group, all the eigenvalues of the Dirac operator are

doubly degenerated. As a result, the distribution of the Dirac eigenvalues can fit with the

chiral GSE with quadruply degenerated masses NF = 4 in the broken phase Σ 6= 0.

As shown in the left panel of figure 9, we observed that the fitting with the chiral

GSE works out very nicely in the broken phase. As the bare coupling β = 4/g2 grows

the chiral condensate becomes smaller and eventually the fitting becomes unreliable at

around β = 1.4–1.5 (figure 10). This implies that the chiral condensate vanishes and the

symmetry is restored at β & 1.45. A detailed analysis with more lattice data is currently

ongoing [60]. We note that even with large values of the scaled quark masses µf , fitting with
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the quenched chiral GSE is valid as long as the magnitude of the eigenvalue is much smaller

than F 2
π/(Σ

√
V ). Although the value of Fπ, the pion decay constant, is not available from

the current lattice data, it is natural to assume that the smallest of the Dirac eigenvalues

satisfies this condition in the broken phase. The Banks-Casher relation tells us that the

smallest eigenvalue is small enough to give a non-zero eigenvalue density around the origin.

Finally we will list some directions for the future research. Firstly, the numerical

computations developed in this article could also be applied to the two-color QCD with

NF = 8–12 fundamental flavors. Among such systems, the existence of the conformal

window is strongly expected, and the technology of their lattice simulations is developping

remarkably in recent years. We anticipate that the RMT analysis of the spectral statistics

of the Dirac operators would discriminate the (near-)conformality of the QCD-like systems

and unveil some novel aspects of the conformal window.

The Fredholm Pfaffian for the Janossy density of the chiral Gaussian orthogonal en-

semble will deserve a future study direction; the chiral GOE describes the distributions of

the Dirac eigenvalues for QCD-like systems with staggered fermions in adjoint represen-

tation of SU(Nc) [21]. It is known that the exponential convergence of the Nyström-type

discretization of the Fredholm Pfaffian for the orthogonal ensemble is not guaranteed due to

the infinite oscillations originating from the discontinuity of the quaternion kernel elements.

Even though such hard problem resides, we may still be able to apply the Nyström-type

discretization for the practical purpose if the error can be estimated appropriately, and use

it to estimate the value of the chiral condensate Σ for the adjoint QCD-like system.8

In [54, 55], an exact analysis of the Janossy density for the unitary ensemble is done on

a basis of the Painlevé II transcendent and its associated isomonodromic system. General-

ization of such an exact analysis to the symplectic and orthogonal ensembles could be an

interesting direction yet to be studied, and it can be compared with our numerical results.

Recent years, the (0 + 1)-dimensional fermionic model with all-to-all random interac-

tions referred to as Sachdev-Ye-Kitaev (SYK) model [64, 65] has been studied very actively

in the context of the nonequilibrium quantum many-body systems and its application to

the AdS/CFT correspondence (see references in a recent review article [66]). The level

statistics of the SYK model was numerically examined, and good agreements with the

RMT have been observed. It would be interesting to explore how the Fredholm determi-

nant or Pfaffian expression for the Janossy density of the chiral random matrices appears

in the level statistics of the supersymmetric SYK Hamiltonian [67, 68].
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A Quaternionic kernels for the chiral Gaussian symplectic ensemble

In this appendix, the explicit forms of the spectral kernel for the chiral GSE are summarized

for quadruply degenerated masses NF = 4α and doubly degenerated masses NF = 2α.

A.1 Spectral kernel for quadruply degenerated masses

The scaled correlation function of the β = 4 chiral RMT with quadruply degenerated

masses NF = 4α in the scaling limit (2.9) is given in [30].

R
(p)
β=4,ν(ζ1, . . . , ζp; {µa}) =

Pf

Z
 [K++(ζi, ζj)]i,j=1,...,p [K+−(µa, ζj)]a=1,...,α

j=1,...,p

[K−+(ζi, µb)] i=1,...,p
b=1,...,α

[K−−(µa, µb)]a,b=1,...,α


Pf
[
Z [K−−(µa, µb)]a,b=1,...,α

] ,

(A.1)

KAB(ζ, ζ ′) =

[
−SAB(ζ, ζ ′) −IAB(ζ, ζ ′)

DAB(ζ, ζ ′) −SBA(ζ ′, ζ)

]
, Z = iσ2 ⊗ I,

where elements of block matrices are

S++(ζ, ζ ′) = 2

∫ 1

0
du

∫ 1

0
dv
√
ζζ ′ζv2

×
(
J2ν(2vζ)uJ2ν+1(2uvζ ′)− J2ν(2uvζ)J2ν+1(2vζ ′)

)
,

S+−(ζ, η′) = (−1)ν+12

∫ 1

0
du

∫ 1

0
dv
√
ζη′ζv2

×
(
J2ν(2vζ)uI2ν+1(2uvη′)− J2ν(2uvζ)I2ν+1(2vη′)

)
,

S−+(η, ζ ′) = (−1)ν+12

∫ 1

0
du

∫ 1

0
dv
√
ηζ ′ηv2

×
(
I2ν(2vη)uJ2ν+1(2uvζ ′)− I2ν(2uvη)J2ν+1(2vζ ′)

)
,
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S−−(η, η′) = (−1)2ν2

∫ 1

0
du

∫ 1

0
dv
√
ηη′ηv2

×
(
I2ν(2vη)uI2ν+1(2uvη′)− I2ν(2uvη)I2ν+1(2vη′)

)
, (A.2)

D++(ζ, ζ ′) = 2

∫ 1

0
du

∫ 1

0
dv
√
ζζ ′v3u

×
(
J2ν+1(2vζ)J2ν+1(2uvζ ′)− J2ν+1(2uvζ)J2ν+1(2vζ ′)

)
,

D+−(ζ, η′) = (−1)ν+12

∫ 1

0
du

∫ 1

0
dv
√
ζη′v3u

×
(
J2ν+1(2vζ)I2ν+1(2uvη′)− J2ν+1(2uvζ)I2ν+1(2vη′)

)
,

D−+(η, ζ ′) = −D+−(ζ ′, η),

D−−(η, η′) = (−1)2ν2

∫ 1

0
du

∫ 1

0
dv
√
ηη′v3u

×
(
I2ν+1(2vη)I2ν+1(2uvη′)− I2ν+1(2uvη)I2ν+1(2vη′)

)
, (A.3)

I++(ζ, ζ ′) = 2

∫ 1

0
du

∫ 1

0
dv
√
ζζ ′ζζ ′v

(
J2ν(2vζ)J2ν(2uvζ ′)− J2ν(2uvζ)J2ν(2vζ ′)

)
,

I+−(ζ, η′) = (−1)ν+12

∫ 1

0
du

∫ 1

0
dv
√
ζη′ζη′v

(
J2ν(2vζ)I2ν(2uvη′)− J2ν(2uvζ)I2ν(2vη′)

)
,

I−+(ζ, η′) = − I+−(η′, ζ),

I−−(η, η′) = (−1)2ν2

∫ 1

0
du

∫ 1

0
dv
√
ηη′ηη′v

(
I2ν(2vη)I2ν(2uvζ ′)− I2ν(2uvη)I2ν(2vη′)

)
.

(A.4)

A.2 Spectral kernel for doubly degenerated masses

The p-level correlation function for β = 4 chiral RMT with NF = 2α doubly degenerated

masses in the scaling limit (2.9) is given in [30].

R
(p)
β=4,ν(ζ1, . . . , ζp; {µa}) =

Pf
[
ZK(p)

]
Pf
[
ZK(0)

] . (A.5)

For even α, the kernel ZK(p) is given as follows:

ZK(p) =


[I−−(µa, µb)]a,b=1,...,α [I−+(µa, ζi)]a=1,...,α

j=1,...,p
[S−+(µa, ζj)]a=1,...,α

j=1,...,p

−[IT
−+(µb, ζi)]b=1,...,α

i=1,...,p
[I++(ζi, ζj)]i,j=1,...,p [S++(ζi, ζj)]i,j=1,...,p

−[ST
−+(µb, ζi)]b=1,...,α

i=1,...,p
−[ST

++(ζj , ζi)]i,j=1,...,p [D++(ζi, ζj)]i,j=1,...,p

 , (A.6)

where SAB’s, DAB’s, and IAB’s are the same as NF = 4α in appendix A.1, and T stands

for the transposition of the block matrix.
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For odd α, the kernel ZK(p) is given as follows:

ZK(p) =


[I−−(µa, µb)]a,b=1,...,α [Q−(µa)]a=1,...,α [I−+(µa, ζj)] a=1,...,α

j=1,...,M
[S−+(µa, ζj)]a=1,...,α

j=1,...,p

−[QT
−(µb)]b=1,...,α 0 −[QT

+(ζj)]j=1,...,p −[PT
+ (ζj)]j=1,...,p

−[IT
−+(µb, ζi)] i=1,...,p

b=1,...,α
[Q+(ζi)]i=1,...,p [I++(ζi, ζj)]i,j=1,...,p [S++(ζi, ζj)]i,j=1,...,p

−[ST
−+(µb, ζi)] i=1,...,p

b=1,...,α
[P+(ζi)]i=1,...,p −[ST

++(ζj , ζi)]i,j=1,...,p [D++(ζi, ζj)]i,j=1,...,p

 . (A.7)

where SAB’s, DAB’s, and IAB’s are the same as NF = 4α in appendix A.1, and

Q+(ζ) = 2
√
ζζ

∫ 1

0
dv J2ν(2vζ), Q−(η) = (−1)ν+12

√
ηη

∫ 1

0
dv I2ν(2vη), (A.8)

P+(ζ) = 2
√
ζ

∫ 1

0
dv vJ2ν+1(2vζ). (A.9)

B Confluent limits of the correlation function

B.1 Chiral Gaussian unitary ensemble

Let Zβ=2,ν(x1, . . . , xn) be the partition function which is obtained as the scaling limit (2.9)

of the chiral Gaussian unitary ensemble with Nf = 2n mass parameters xa = ma/∆ [18,

26, 27].

Zβ=2,ν(x1, . . . , xn) =
det
[
xb−1
a Iν+b−1(xa)

]n
a,b=1∏

a>b(x
2
a − x2

b)
. (B.1)

To consider the confluent limit xi → xj of this partition function [69], we will use the l’

Hôpital’s rule given as follows.

Let f, g be differentiable functions on an interval I ∈ R. Assume that for c ∈ I,

(1) limx→c f(x) = limx→c g(x) = 0 or∞, (2) limx→c f
′(x)/g′(x) exists, (3) g′(x) 6= 0 for

x ∈ I \ {c}, then

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
. (B.2)

One finds that the confluent limit xi → x1 = x (i = 1, . . . , n) of the partition function

Zβ=2,ν(x1, . . . , xn) by adopting the l’ Hôpital’s rule (B.2) repeatedly.

lim
xn→x1

lim
xn−1→x1

· · · lim
x2→x1

Zβ=2,ν(x1, . . . , xn)

= lim
xn→x1

lim
xn−1→x1

· · · lim
x2→x1

∣∣∣∣∣∣∣∣∣∣
I0(x1) x1I1(x1) · · · xn−1

1 In−1(x1)

I0(x2) x2I1(x2) · · · xn−1
2 In−1(x2)

...
...

...
...

I0(xn) xnI1(xn) · · · xn−1
n In−1(xn)

∣∣∣∣∣∣∣∣∣∣
(x2

1 − x2
2)(x2

1 − x2
2) · · · (x2

n−1 − x2
n)

– 26 –



J
H
E
P
0
8
(
2
0
1
9
)
0
5
3

=

(
1
2

1
22

1
23
· · · 1

2n−1

1!2!3! · · · (n− 1)!

)
∣∣∣∣∣∣∣∣∣∣∣∣

I0(x1) x1I1(x1) · · · xn−1
1 In−1(x1)

x−1
1 I−1(x1) I0(x1) · · · xn−2

1 In−2(x1)

x−2
1 I−2(x1) x−1

1 I−1(x1) · · · xn−3
1 In−3(x1)

...
...

...
...

x
−(n−1)
1 I−(n−1)(x1) x

−(n−2)
1 I−(n−2)(x1) · · · x0

1I0(x1)

∣∣∣∣∣∣∣∣∣∣∣∣
=

1
2

1
22

1
23
· · · 1

2n−1

1!2!3! · · · (n− 1)!
det
[
xa−b1 Ia−b(x)

]n
a,b=1

, (B.3)

where the following formula of the Bessel function is adopted

2
∂

∂x2

(
xkIk(x)

)
= xk−1Ik−1(x). (B.4)

Next we will consider the scalar kernel Ks(ζ, ζ
′, µ1, µ2, . . . , µα) for the chiral GUE with

ν = 0 [18, 26, 27].

Ks(ζ, ζ
′, µ1, µ2, . . . , µα) =

√
ζζ ′

(ζ2 − ζ ′2)
∏α
k=1

√
(ζ2 + µ2

k)(ζ
′2 + µ2

k)

×

∣∣∣∣∣∣∣∣∣∣∣∣

J0(ζ) ζJ1(ζ) · · · ζα+1Jα+1(ζ)

J0(ζ ′) ζJ1(ζ ′) · · · ζ ′α+1Jα+1(ζ ′)

I0(µ1) ζ(−µ1)I1(µ1) · · · µα+1
1 Jα+1(µ1)

...
... · · ·

...

I0(µα) ζ(−µα)I1(µα) · · · µα+1
α Jα+1(µα)

∣∣∣∣∣∣∣∣∣∣∣∣
det [(−µk)`I`(µk)]αk,`=1

. (B.5)

The confluent limit of Ks(ζ, ζ
′, µ1, µ2, . . . , µα) is also obtained in the same way as the

partition function Zβ=2,ν(x1, . . . , xn) considered above. For our notational convenience, we

introduce

Ak(x) = xkIk(x), Bk(x) = (−x)kJk(x), (B.6)

and Ak’s obey

d

dx2
Ak(x) =

1

2
Ak−1. (B.7)

Adopting such notation, one can express the complete confluent limit (µi → µ1 = µ

for i = 2, . . . , α) of the determinant factor in the scalar kernel Ks(ζ, ζ
′, µ1, µ2, . . . , µα).

lim
µ2→µ1

· · · lim
µα→µ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0(ζ) B1(ζ) · · · Bα+1(ζ)

B0(ζ ′) B1(ζ ′) · · · Bα+1(ζ ′)

A0(µ1) A1(µ1) · · · Aα+1(µ1)

A0(µ2) A1(µ2) · · · Aα+1(µ2)
...

... · · ·
...

A0(µα) A1(µα) · · · Aα+1(µα)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det [A`(µk)]

α
k,`=1

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0(ζ) B1(ζ) · · · Bα+1(ζ)

B0(ζ ′) B1(ζ ′) · · · Bα+1(ζ ′)

A0(µ) A1(µ) · · · Aα+1(µ)

A−1(µ) A0(µ) · · · Aα(µ)
...

... · · ·
...

A−α+1(µ) A−α+2(µ) · · · A0(µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det [Ak−`(µ)]αk,`=1

.

(B.8)
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Completed by the confluent limit of remaining factors in Ks(ζ, ζ
′, µ1, µ2, . . . , µα), one ob-

tains the confluent limit of the spectral kernel for the chiral GUE.

B.2 Chiral Gaussian symplectic ensemble

The partition function Zβ=4,ν({µa}) for the scaling limit (2.9) of the chiral GSE (β = 4)

with 2α (α: even) flavors of the doubly degenerated masses is given as follows [30].

Zβ=4,ν({µa}) = cα

(
α∏
i=1

µ2ν
i

)
Pf(Zf)

∆(µ2
1, . . . , µ

2
α)
, (B.9)

where

cα = (−1)
α(α+1)

2

α−1∏
k=0

(2k + 1)!, ∆(µ2
1, . . . , µ

2
α) =

∏
i>j

(µ2
i − µ2

j ).

fij = f(µi, µj) =

∫ 1

0
dt t

I2ν(2tµi)

µνi

∫ 1

0
du
I2ν(2tuµj)

µ2ν
j

− (i↔ j). (B.10)

The complete confluent limit µi → µ1 = µ of the partition function Zβ=4,ν(µ⊗2
1 , . . . , µ⊗2

n )

yields

lim
µ2,...,n→µ1=µ

Zβ=4,ν(µ⊗2
1 , . . . , µ⊗2

n ) =
1
2

1
22
· · · 1

2n−1

1!2! · · · (n− 1)!
c4 · Pf

(
Z[f (i,j)(µ, µ)]n−1

i,j=0

)
, (B.11)

where

f (k,`)(µi, µj) =

(
∂

∂µ2
i

)k( ∂

∂µ2
j

)`
f(µi, µj). (B.12)

The complete confluent limit (µi → µ1 = µ for i = 2, . . . , α) of the correlation func-

tion (A.6) in [30] is also obtained in the same way. In the limit µ2,...,n → µ1 = µ, matrix

elements in eq. (A.6) are replaced in the following way. (For simplicity, we consider the

case of ν = 0.)

I−−(µi, µj) → I
(i−1,j−1)
−− (µ, µ)

= µ2

∫ 1

0
dt

∫ 1

0
du t

[
(2t)2(i−1)(2tu)2(j−1)A−i+1(2tµ)A−j+1(2tuµ)

− (2t)2(j−1)(2tu)2(i−1)A−j+1(2tµ)A−i+1(2tuµ)
]
,

I−+(µi, ζ`) → I
(i−1,0)
−+ (µ, ζ`)

= µ

∫ 1

0
dt

∫ 1

0
du t

[
(2t)2(i−1)A−i+1(2tµ)J0(2tuζ`)

− (2tu)2(i−1)A−i+1(2tuµ)J0(2tζ`)
]
,

S−+(µi, ζ`) →S
(i−1,0)
−+ (µ, ζ`)

= µ

∫ 1

0
dt

∫ 1

0
du t2

[
(2t)2(i−1)uA−i+1(2tµ)J1(2tuζ`)

− (2tu)2(i−1)A−i+1(2tuµ)J1(2tζ`)
]
. (B.13)
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The other matrix elements are kept untouched, because they are not dependent on mass

parameters µi’s.

Lastly, for the odd α case in addition to the above replacements, the matrix elements

Q−’s in eq. (A.7) are also replaced by

Q−(µj) → Q
(j−1)
− (µ) =

∂i−1

∂(µ2)j−1
Q−(µ) =

∫ 1

0
dv (2v)2(j−1)−1 dj−1

d(x2)j−1
(xA0(x))

∣∣∣
x=2vµ

.

(B.14)

B.2.1 Quadruply degenerated kernels in the confluent limit

For the chiral GSE with NF = 4α quadruply degenerated masses, we can use the spectral

kernel given in appendix A.1. In the complete confluent limit, some matrix elements in

eqs. (A.2)–(A.4) are replaced as follows. (We also choose ν = 0 for simplicity.)

S+−(ζ, µa)→S
(0,a−1)
+− (ζ, µ)

= 2

∫ 1

0
du

∫ 1

0
dv
√
ζµζv2

×
[
(2uv)2(a−1)uJ0(2vζ)

da−1

d(x2)a−1
(x−1A1(x))

∣∣∣
x=2uvµ

− (2v)2(a−1)J0(2uvζ)
da−1

d(x2)a−1
(x−1A1(x))

∣∣∣
x=2vµ

]
,

S−+(µa, ζ)→S
(0,a−1)
−+ (ζ, µ)

= 2

∫ 1

0
du

∫ 1

0
dv
√
ζµµv2

[
(2v)2(a−1)uA−a+1(2vµ)J1(2uvµ)

− (2uv)2(a−1)A−a+1(2uvµ)J1(2vµ)
]
,

S−−(µa, µb)→S
(a−1,b−1)
−− (µ, µ)

= −2

∫ 1

0
du

∫ 1

0
dv µ2v2

×
[
(2v)2(a−1)(2uv)2(b−1)uA−a+1(2vµ)

db−1

d(x2)b−1
(x−1A1(x))

∣∣∣
x=2uvµ

− (2v)2(b−1)(2uv)2(a−1)A−a+1(2uvµ)
db−1

d(x2)b−1
(x−1A1(x))

∣∣∣
x=2vµ

]
,

(B.15)

D+−(ζ, µa)→D
(0,a−1)
+− (ζ, µ)

= −2

∫ 1

0
du

∫ 1

0
dv
√
ζµv3u

×
[
(2uv)2(a−1)J1(2vζ)

da−1

d(x2)a−1
(x−1A1(x))

∣∣∣
x=2uvµ

− (2v)2(a−1)J1(2uvζ)
da−1

d(x2)a−1
(x−1A1(x))

∣∣∣
x=2vµ

]
,

D−+(µa, ζ
′) → −D(0,a−1)

−+ (ζ ′, µ),

– 29 –



J
H
E
P
0
8
(
2
0
1
9
)
0
5
3

D−−(µa, µb)→D
(a−1,b−1)
−− (ζ, µ)

= 2

∫ 1

0
du

∫ 1

0
dv µv3u

×
[
(2v)2(a−1)(2uv)2(b−1)A2−a(2vµ)

db−1

d(x2)b−1
(x−1A1(x))

∣∣∣
x=2uvµ

− (2uv)2(a−1)(2v)2(b−1)A2−a(2uvµ)
db−1

d(x2)b−1
(x−1A1(x))

∣∣∣
x=2vµ

]
,

(B.16)

I+−(ζ, µa)→ I
(0,a−1)
+− (ζ, µ)

= 2

∫ 1

0
du

∫ 1

0
dv
√
ζµζµv

[
(2uv)2(a−1)J0(2vζ)A1−a(2uvµ)

− (2v)2(a−1)J0(2uvζ)A1−a(2vµ)
]
,

I−+(µ, ζ ′) → − I(0,a−1)
+− (ζ ′, µ),

I−−(µa, µb)→ I
(a−1,b−1)
−− (µ, µ)

= −2

∫ 1

0
du

∫ 1

0
dv µ3v

[
(2v)2(a−1)(2uv)2(b−1)A1−a(2vµ)A1−b(2uvµ)

− (2uv)2(a−1)(2v)2(b−1)A1−a(2uvµ)A1−b(2vµ)
]
, (B.17)

where

Ak(x) = xkIk(x), 2
dIk(x)

dx
= x−1Ik−1(x)− kx−2Ik(x). (B.18)

C Janossy density

C.1 Janossy density for the determinantal random point process

Below we shall overview the definition of the Janossy density for the determinantal random

point process [70–72]. Consider an ensemble of N particles on Z with the joint distribution

(see (1) in figure 11) given by

p(n1, . . . , nN ) =
1

N !
det [K(ni, nj)]

N
i,j=1 , ni ∈ Z, (C.1)

with the kernel K = [K(n,m)]n,m∈Z obeying the projective condition:

K ·K = K, tr K = N. (C.2)

Then the k-point function Rk(n1, . . . , nk) is given by

Rk(n1, . . . , nk) = det [K(ni, nj)]
k
i,j=1 . (C.3)

Consider the probability Jk,I(n1, . . . , nk) of finding no particle in an interval I ⊂ Z
except for k designated point. (See (2) in figure 11.) Jk,I(n1, . . . , nk) is called Janossy
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Figure 11. Distribution of particles. (1) there is a particle at each of the points ni (i = 1, . . . , N).

(2) there are exactly k particles in I, one in each of k designated points ni (i = 1, . . . , k). (3) there

are exactly p particles in I except for k designated points ni (i = 1, . . . , k).

density [73], which is given by the restricted kernel KI = [K(n,m)]n,m∈I on I for the

determinantal point process.

Jk,I(n1, . . . , nk) = det(I−KI) · det
[
〈ni|KI(I−KI)

−1|nj〉
]k
i,j=1

= (−1)k det

∣∣∣∣∣ − [〈ni|KI |nj〉]i,j=1,...,k − [〈n|KI |nj〉]j=1,...,k;n∈I
− [〈ni|KI |m〉]i=1,...,k;m∈I [〈n|(I−KI)|m〉]n,m∈I

∣∣∣∣∣ . (C.4)

Here we denote the restricted kernel by KI(n,m) = 〈n|KI |m〉 with the orthonor-

mal complete basis {|n〉 |n ∈ I} and its dual {〈n| |n ∈ I}. The first line of (C.4)

is quoted e.g. from [74] (π(X) on page 341), and the second line is by the identity

detD · det
(
A− CD−1B

)
= det

∣∣ A B
C D

∣∣.
Generalization to the probability Jp,k,I(n1, . . . , nk) of finding exactly p particles in I

except for k designated points is straightforward (see (3) in figure 11). Just as in the case

of the ordinary gap probability (k = 0), we merely introduce the spectral parameter z so

that Jp,k,I(n1, . . . , nk) is given by

Jp,k,I(n1, . . . , nk) =
1

p!
(−∂z)p det(I− zKI) · det

[
〈ni|KI(I− zKI)

−1|nj〉
]k
i,j=1

∣∣∣∣
z=1

. (C.5)

For the continuous determinantal random point process on X ⊂ R with the measure

µ, the Janossy density Jk,I(x1, . . . , xk)µ(dx1) · · ·µ(dxk) for the distribution of the particles

in a subset I ⊂ X is defined as the probability density of finding exactly k particles in I

and one at each of the k infinitesimal intervals (xi, xi + dxi) ⊂ I. Jk,I(x1, . . . , xk) is given

by the Fredholm determinant det(I − KI) and the determinant of LI := KI(I − KI)
−1

such that

Jk,I(x1, . . . , xk) = det(I−KI) · det [LI(xi, xj)]
k
i,j=1 . (C.6)
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Figure 12. The determinantal random point process for xi i = 1, . . . , N+n with designated points

at −m2
a (a = 1, . . . , n). (A) For m2

a < 0: the Janossy density Jk,n,[0,s]({−m2
a}). (B) For m2

a > 0:

the probability distribution E(k; [0, s]; {ma}) as an analytic continuation of the Janossy density.

C.2 Massive chiral Gaussian ensemble with NF = βn fermions and the

Janossy density

Consider a block diagonal Hermitian matrix H of Dyson index β = 1, 2, 4:

H =

(
0 W

W † 0

)
, W ∈ FN×(N+ν), F = R,C,H. (C.7)

The partition function ZN,β,ν({ma}) of the massive chiral Gaussian ensemble with NF = βn

fermions is given by

ZN,β,ν({ma}) =

∫
dH e−βtrH2

n∏
a=1

(H + ima)
β

=

∫ ∞
0

N∏
i=1

(
dxi x

β(ν+1)
2
−1

i e−βxi
n∏
a=1

∣∣xi +m2
a

∣∣β) N∏
i>j

|xi − xj |β . (C.8)

It can further be rewritten as an N + n eigenvalue integral in the following form (up to

m-dependent prefactor CN,β,ν({ma})):

ZN,β,ν({ma}) =
1

CN,β,ν({ma})

∫ ∞
−∞

N+n∏
i=1

(
dxi x

β(ν+1)
2
−1

i e−βxi
)N+n∏

i>j

|xi − xj |β

×
N∏
`=1

θ(x`)

N+n∏
k=N+1

δ
(
xk − (−m2

k−N )
)
, (C.9)

where θ(x) stands for the Heaviside function.

This partition function is regarded as that of the determinantal random point process

for xi (i = 1, . . . , N + n) with designated points at −m2
a (a = 1, . . . , n). In the case of

m2
a < 0, the Janossy density Jk,n,[0,s](−m2

1, . . . ,−m2
n) on the interval I = [0, s] (s > 0)

for the above massive chiral Gaussian ensemble is found by adopting the spectral kernel

K(zi, zj) [22–25] to eq. (C.6). (See (A) in figure 12.)

– 32 –



J
H
E
P
0
8
(
2
0
1
9
)
0
5
3

Applying an analytic continuation with respect to the mass parameters ma’s, one finds

the joint probability E(k; [0, s]; {ma}) in eq. (2.19) as the Janossy density Jk,n,[0,s]({−m2
a})

with m2
a > 0. (See (B) in figure 12.)

D Probability distribution of the kth smallest eigenvalue

The probability Ek(s) = E(k; [0, s]; {−m2
a}) of finding exactly k eigenvalues in the interval

[0, s] is given by the kth derivative of the Fredholm determinant τ(z; [0, s]; {−m2
a}) by the

parameter z such that

Ek(s) =
1

k!
(−∂z)kτ(z; [0, s]; {−ya})

∣∣∣
z=1

. (D.1)

The Fredholm determinant and Pfaffian in eqs. (2.27) and (2.31) are represented by

τ(z; [0, s]; {−m2
a}) = det

∣∣∣∣∣ −κ −
√
zkT

−
√
zk Î− zK

∣∣∣∣∣
/

det(−κ), (D.2)

where det stands for determinant and quaternionic determinant for unitary and symplectic

ensembles, respectively. The Taylor expansion of τ(z; [0, s]; {−m2
a}) in eq. (D.2) around z =

1 is found as combinations of the functional traces Tn’s as follows. (The same expansions

for the quenched (α = 0) ensembles are given in [20].)

E0(s) = τ(z = 1; [0, s]; {−ya}), E1(s) = E0(s)T̄1, E2(s) =
E0(s)

2!

(
T̄ 2

1 − T̄2

)
,

E3(s) =
E0(s)

3!

(
T̄ 3

1 − 3T̄1T̄2 + T̄3

)
,

E4(s) =
E0(s)

4!

(
T̄ 4

1 − 6T̄ 2
1 T̄2 + 3T̄ 2

2 + 4T̄1T̄3 − T̄4

)
,

E5(s) =
E0(s)

5!

(
T̄ 5

1 − 10T̄ 3
1 T̄2 + 10T̄ 2

1 T̄3 + 15T̄1T̄
2
2 − 5T̄1T̄4 − 10T̄2T̄3 + T̄5

)
,

E6(s) =
E0(s)

6!

(
T̄ 6

1 − 15T̄ 4
1 T̄2 + 20T̄ 3

1 T̄3 + 45T̄ 2
1 T̄

2
2 − 15T̄ 2

1 T̄4 − 60T̄1T̄2T̄3 − 15T̄ 3
2

+ 6T̄1T̄5 + 15T̄2T̄4 + 10T̄ 3
2 − T̄6

)
,

E7(s) =
E0(s)

7!

(
T̄ 7

1 − 21T̄ 5
1 T̄2 + 35T̄ 4

1 T̄3 + 105T̄ 3
1 T̄

2
1 − 35T̄ 3

1 T̄4 − 210T̄ 2
1 T̄2T̄3 − 105T̄1T̄

3
2

+ 21T̄ 2
1 T̄5 + 105T̄1T̄2T̄4 + 70T̄1T̄

2
3 + 105T̄ 2

2 T̄3 − 7T̄1T̄6 − 21T̄2T̄5

− 35T̄3T̄4 + T̄7

)
. (D.3)

The functional traces consist of operators K(n)’s are given by

K(z) =

(
−κ −

√
zkT

−
√
zk I− zK

)
, K(0) = K(z = 1) =

(
−κ −kT

−k I−K

)
,

K(1) = − ∂

∂z
K(z)

∣∣∣
z=1

=

(
0 1

2k
T

1
2k K

)
,

K(n) =
∂n

∂zn
K(z)

∣∣∣∣
z=1

= (−1)n−1 (2n− 3)!

2n

(
0 1

2k
T

1
2k 0

)
, (n ≥ 2). (D.4)
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Using these operators, one can show T̄n (k = 1, . . . , 7) as follows.

T̄1 =
1

2
tr
[
K(1) · K(0)−1

]
,

T̄2 =
1

2
tr

[(
K(1) · K(0)−1

)2
]

+
1

2
tr
[
K(2) · K(0)−1

]
,

T̄3 = 2! · 1

2
tr

[(
K(1) · K(0)−1

)3
]

+ 3 · 1

2
tr
[
K(1) · K(0)−1 · K(2) · K(0)−1

]
+

1

2
tr
[
K(3) · K(0)−1

]
,

T̄4 = 3! · 1

2
tr

[(
K(1) · K(0)−1

)4
]

+ 12 · 1

2
tr

[(
K(1) · K(0)−1

)2
· K(2) · K(0)−1

]
+ 3 · 1

2
tr

[(
K(2) · K(0)−1

)2
]

+ 4 · 1

2
tr
[
K(1) · K(0)−1 · K(3) · K(0)−1

]
+

1

2
tr
[
K(4) · K(0)−1

]
,

T̄5 = 4! · 1

2
tr

[(
K(1) · K(0)−1

)5
]

+ 60 · 1

2
tr

[(
K(1) · K(0)−1

)3
· K(2) · K(0)−1

]
+ 20 · 1

2
tr

[(
K(1) · K(0)−1

)2
· K(3) · K(0)−1

]
+ 30 · 1

2
tr

[
K(1) · K(0)−1 ·

(
K(2) · K(0)−1

)2
]

+ 5 · 1

2
tr
[
K(1) · K(0)−1 · K(4) · K(0)−1

]
+ 10 · 1

2
tr
[
K(2) · K(0)−1 · K(3) · K(0)−1

]
+

1

2
tr
[
K(5) · K(0)−1

]
,

T̄6 = 5! · 1

2
tr

[(
K(1) · K(0)−1

)6
]

+ 360 · 1

2
tr

[(
K(1) · K(0)−1

)4
· K(2) · K(0)−1

]
+ 120 · 1

2
tr

[(
K(1) · K(0)−1

)3
· K(3) · K(0)−1

]
+ 180 · 1

2
tr

[(
K(1) · K(0)−1

)2
·
(
K(2) · K(0)−1

)2
]

+ 90 · 1

2
tr
[
K(1) · K(0)−1 · K(2) · K(0)−1 · K(1) · K(0)−1 · K(2) · K(0)−1

]
+ 30 · 1

2
tr

[(
K(1) · K(0)−1

)2
· K(4) · K(0)−1

]
+ 120 · 1

2
tr
[
K(1) · K(0)−1 · K(2) · K(0)−1 · K(3) · K(0)−1

]
+ 30 · 1

2
tr

[(
K(2) · K(0)−1

)3
]

+ 6 · 1

2
tr
[
K(1) · K(0)−1 · K(5) · K(0)−1

]
+ 15 · 1

2
tr
[
K(2) · K(0)−1 · K(4) · K(0)−1

]
+ 10 · 1

2
tr

[(
K(3) · K(0)−1

)2
]

+
1

2
tr
[
K(6) · K(0)−1

]
,

T̄7 = 6! · 1

2
tr

[(
K(1) · K(0)−1

)7
]

+ 2520 · 1

2
tr

[(
K(1) · K(0)−1

)5
· K(2) · K(0)−1

]
+ 840 · 1

2
tr

[(
K(1) · K(0)−1

)4
· K(3) · K(0)−1

]
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+ 1260 · 1

2
tr

[(
K(1) · K(0)−1

)3
·
(
K(2) · K(0)−1

)2
]

+ 1260 · 1

2
tr

[(
K(1) · K(0)−1

)2
· K(2) · K(0)−1 · K(1) · K(0)−1 · K(2) · K(0)−1

]
+ 210 · 1

2
tr

[(
K(1) · K(0)−1

)3
· K(4) · K(0)−1

]
+ 840 · 1

2
tr

[(
K(1) · K(0)−1

)2
· K(2) · K(0)−1 · K(3) · K(0)−1

]
+ 420 · 1

2
tr
[
K(1) · K(0)−1 · K(2) · K(0)−1 · K(1) · K(0)−1 · K(3) · K(0)−1

]
+ 630 · 1

2
tr

[
K(1) · K(0)−1 ·

(
K(2) · K(0)−1

)3
]

+ 42 · 1

2
tr

[(
K(1) · K(0)−1

)2
· K(5) · K(0)−1

]
+ 210 · 1

2
tr
[
K(1) · K(0)−1 · K(2) · K(0)−1K(4) · K(0)−1

]
+ 140 · 1

2
tr

[
K(1) · K(0)−1 ·

(
K(3) · K(0)−1

)2
]

+ 210 · 1

2
tr

[(
K(2) · K(0)−1

)2
· K(3) · K(0)−1

]
+ 7 · 1

2
tr
[
K(1) · K(0)−1 · K(6) · K(0)−1

]
+ 21 · 1

2
tr
[
K(2) · K(0)−1 · K(5) · K(0)−1

]
+

1

2
tr
[
K(7) · K(0)−1

]
. (D.5)

The above expansion of the functional trace can also be considered as follows. Rewrit-

ing the Fredholm determinant and Pfaffian given in eq. (D.2) into the following form:9

det

∣∣∣∣∣ −κ −
√
zkT

−
√
zk Î− zK

∣∣∣∣∣ / det(−κ) = det
(
Î− z(K − kκ−1kT)

)
,

then one finds that Ek(s)’s in eq. (D.2) are represented as the quenched model. Using the

representation eq. (2.6) in [20], we obtain a little different expansion with the functional

traces of the resolvents Tn(s) = tr(K̃(I−K̃)−1)n for the Fredholm determinant and Tn(s) =

tr(K̃(I− K̃)−1)n/2 for the Fredholm Pfaffian with K̃ = K − kκ−1kT.

E Gauss-Legendre quadrature rule

The quadrature rule is an efficient method to perform the numerical evaluation for the

integral of the smooth function. The quadrature formula for the integral over the interval

is represented as [49]

QI(f) =

m∑
i=1

wif(xi) ≈
∫
I
f(x)dx, (E.1)

9The authors thank the anonymous referee for pointing out such expansion.
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M x
[−1,1]
i w

[−1,1]
i

1 0 2

2 ±
√

1/3 1

3 0 8/9

±
√

3/5 5/9

4 ±
√

(3− 2
√

6/5)/7 18+
√
30

36

±
√

(3 + 2
√

6/5)/7 18+
√
30

36

5 0 128/225

± 1
3

√
5− 2

√
10/7 322+13

√
70

900

± 1
3

√
5 + 2

√
10/7 322−13

√
70

900

Table 1. Nodes and weights of the Gauss-Legendre rule.

where wi and xi denote the weight and nodes, respectively, determined by the prescription

of the quadrature rule. There are several kinds of quadrature rules. The most basic

method is the Gauss-Legendre rule and more efficient one is the Clenshaw-Curtis rule. In

the following, we will summarize the Gauss-Legendre rule.

Let I = [−1, 1] and M ∈ N.

1. The node x
[−1,1]
i is given by the ith zero of the Legendre polynomial PM (x).

2. The weight w
[−1,1]
i is given by

w
[−1,1]
i =

2

(1− x2
i )

2P ′M (xi)2
. (E.2)

For some lower orders M , nodes and weights are listed in the following table [49].

The following proposition holds for the Gauss-Legendre quadrature rule.

Proposition E.1. The Gauss-Legendre quadrature rule of order M is exact, if f(x) is an

(2M − 1)th order (or lesser) polynomial of x.

By a simple change of variable, one finds the quadrature formula for the interval

I = [a, b]. ∫ b

a
dx f(x) =

b− a
2

∫ 1

−1
f

(
b− a

2
x+

a+ b

2

)
≈ b− a

2

M∑
i=1

w
[−1,1]
i f

(
b− a

2
x

[−1,1]
i +

a+ b

2

)
. (E.3)

In particular for I = [0, s], the quadrature formula reduces to∫ s

0
dx f(x) ≈

M∑
i=1

swi
2
f
(s

2
(xi + 1)

)
. (E.4)
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lattice size β Σ̂ µ χ2/d.o.f num(ν = 0)

84 1.100 0.2176(27) 8.91(11) 0.30(17) 230

1.200 0.1997(24) 8.18(10) 0.25(17) 260

1.300 0.1651(14) 6.76(05) 0.45(20) 314

1.350 0.1378(12) 5.65(05) 0.27(16) 467

1.375 0.1238(13) 5.07(05) 0.52(20) 407

1.400 0.0781(11) 3.20(04) 11.00(93) 843

1.425 0.0215(01) 0.880(4) 2.85(47) 2338

124 1.100 0.1903(23) 39.46(48) 0.66(25) 399

1.300 0.1425(44) 29.54(91) 0.20(15) 63

1.350 0.1263(23) 26.19(49) 0.37(20) 38

1.375 0.1156(39) 23.98(81) 0.13(13) 45

1.400 0.0831(14) 17.23(29) 0.50(23) 106

1.425 0.0598(10) 12.41(21) 0.37(20) 206

1.450 0.0209(04) 4.32(08) 6.74(73) 600

164 1.350 0.1252(20) 82.0(1.3) 0.34(16) 105

1.375 0.1064(34) 69.8(2.3) 0.22(16) 41

1.400 0.0799(12) 52.35(80) 0.37(21) 155

1.425 0.0521(05) 34.13(33) 0.48(20) 369

1.450 0.0246(02) 16.14(17) 0.83(26) 561

1.475 0.0083(01) 5.47(12) 1.32(30) 248

Table 2. Fit result of Σ̂, chiral condensate in the lattice unit, together with the corresponding

value of µ. The bare coupling constant is given through β = 4/g2. The most right column is the

number of configurations we used in each of the fitting, which belong to the topological charge

ν = 0 sector. The reduced chi squared, χ2/d.o.f, indicates the quality of the fitting.

In particular for the numerical evaluation of the Fredholm determinant on τ(z; [0, s]; {µa}),
the nodes and weights for I = [0, s] are chosen as

ζi =
s

2
(x

[−1,1]
i + 1), wi =

sw
[−1,1]
i

2
. (E.5)

F Details of the lattice result

In table 2, we list the result of the fitting of lattice data.

G Estimation of the correlation matrix

An element of the correlation matrix is given

Cij = 〈(yi − 〈yi〉)(yj − 〈yj〉)〉, (G.1)

where yi = I(ŝi) with I(ŝi) =
∫ ŝ

0 dλ̂1p
latt.
1 (λ̂1; m̂f ) defined in eq. (4.4) and ŝi is the upper

end of the i-th bin. The bracket 〈·〉 represents the average over lattice configurations which
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belong to ν = 0 sector. Since the correlation matrix is an average of fluctuation, one needs

to use a resampling method like jackknife or bootstrapping to estimate. In this analysis,

we use the jackknife method.

What we need in the fitting is not the correlation matrix itself but its inverse. As the

estimate of C contains some error, we need some care to invert it. If the bin width is too

fine, neighboring bins may give (almost) the same value which causes zero-mode (or almost

zero-mode) of the correlation matrix. If eigenvalue of C is too small, the relative error of

the eigenvalue becomes large, which makes estimation of C−1 unreliable. Note that the

smallest eigenmode gives the largest contribution to the inverse.

We therefore employ the following steps. First of all, some of the bins do not have

eigenvalues of the Dirac operator in it (the largest several bins and sometimes the first

bin(s)). Let us suppose that i-th bin has no eigenvalue. Then, i-th column/row of the

correlation matrix, Cij and Cji for arbitrary j becomes zero as yi is always 1 (or always 0).

This obviously reduces the rank of C. We therefore replace the diagonal element Cii = 0

with the upper bound of the estimate, 1/n3, where n is number of independent configu-

rations we use.10 The off-diagonal elements are kept zero. After this modification of the

correlation matrix, which is now denoted as C ′, we still may have very small eigenvalues.

Numerically, we even may observe (small) negative eigenvalue of C ′.11 We therefore trun-

cate the correlation matrix by cutting small eigenmodes in inverting the matrix to give an

improved estimate of the inverse of the correlation matrix C−1
imp.. The cutoff ccut we use is

0.1 times smallest diagonal element, ccut = 0.1/n3. That is,

C ′|i〉 = ci|i〉, C−1
imp. =

∑
i s.t. ci>ccut

|i〉 1

ci
〈i|. (G.2)

H Hybrid Monte Carlo (HMC) for RMT

A hybrid Monte Carlo simulation technique [75] is applicable to finite N random ma-

trix theory.

By introducing ζi =
√

8Nxi and µa =
√

8N ma as eq. (2.9), the partition function (2.2)

becomes

Z = C

∫ ∞
0
· · ·
∫ ∞

0

N∏
i=1

dζi e
−S , (H.1)

where C represents irrelevant normalization factor and the action is

S =

N∑
i=1

(
β
ζ2
i

8N
− β(ν + 1)− 1

2
ln(ζ2

i )−
nf∑
a=1

ln
(
ζ2
i + µ2

a

)
− β

∑
j<i

ln
∣∣ζ2
i − ζ2

j

∣∣). (H.2)

The dynamical variables here is the eigenvalue ζi. The Hamiltonian for the HMC is

H =

N∑
i=1

p2
i

2
+ S, (H.3)

10This value is estimated by assuming that 1 configuration has 1 eigenvalue in the bin, and other n − 1

configurations do not have any. We also assume that n is large enough.
11The correlation matrix must be positive semi-definite, but with finite statistics and numerical precision,

we may observe negative eigenvalue.
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N Nf = 2 Nf = 4 Nf = 8

250 2495000 1535950

1000 245000 495000 245000

2000 245000 245000 245000

4000 145000

Table 3. Number of independent Monte Carlo configurations used in section 3.

where pi the conjugate momentum to ζi. It is straightforward to write down the equation

of motions and apply the HMC algorithm. For the molecular dynamical time evolution,

we use a leapfrog integrator.

The only non-trivial part is ordering of the variables. We assume that 0 < ζ1 < ζ2 <

· · · < ζN . Since there is a divergence in the potential at ζi = 0 and ζi = ζj (i 6= j), if

the initial configuration satisfies this ordering, a smooth molecular dynamical evolution

keeps the configuration satisfy the same constraint. Discrete time evolutions, however, can

break the constraint so that we use the so called retry trick. We check whether the trial

configuration satisfies the constraint before the metropolis test. If it does not, rerun the

molecular dynamics with the same random momentum but a finer time step, δτ → δτ/2. If

the constraint is still broken after several reductions of the time step (our limit is 6 times),

the trial configuration is rejected. For β = 4, the frequency of the retry is order 0.01% and

we did not encounter rejections for this reason. As β becomes smaller, the effect of the

potential barrier becomes weaker. In fact, more frequent retries are needed for β = 2, and

some trial configurations are rejected in the end. Note that β = 1 and ν = 0, the potential

barrier at ζi = 0 disappears.

Here is some parameters we used in β = 4 case. The trajectory length between

Metropolis test is τ = 1. We keep the acceptance ratio rather high, typically 0.96–0.97,

to reduce the frequency of retries. To avoid the auto correlation, we measure the smallest

10 ζi every 10 trajectories and all ζi every 500 trajectories. In making the distribution in

figures 3, 4, 6–8, we check the integrated auto correlation, which is 2τint . 1.2 and used

every 2 measurements.

The number of independent configurations used to plot figures 3, 4, 6–8 in section 3

are tabulated in table 3.

I Data of kth smallest eigenvalue distributions for chiral GSE with

NF = 8

Numerical data of Fk(s;µ) (k = 1, 2, 3, 4) for the chiral GSE with NF = 8 degenerate

flavors, in the range 0 ≤ s ≤ 20 and 0 ≤ µ ≤ 100 are provided as supplementary material.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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