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In recent studies of many-body localization in nonintegrable quantum systems, the distri- 
bution of the ratio of two consecuti v e energy le v el spacings, r n = ( E n +1 − E n ) / ( E n − E n −1 ) 
or ˜ r n = min (r n , r −1 

n ) , has been used as a measure to quantify the chaoticity, alternati v e to 

the more conventional distribution of the level spacings, s n = ρ̄( E n )( E n +1 − E n ) , as the for- 
mer makes unnecessary the unfolding r equir ed for the latter. Based on our previous work 

on the Tracy–Widom approach to the Jánossy densities, we present analytic expressions for 
the joint probability distribution of two consecuti v e eigenvalue spacings and the distribu- 
tion of their ratio for the Gaussian unitary ensemble (GUE) of random Hermitian N × N
ma trices a t N → ∞ , in terms of a system of dif ferential equa tions. As a showcase of the 
efficacy of our results for characterizing an approach to quantum chaoticity, we contrast 
them to arguably the most ideal of all quantum-chaotic spectra: the zeroes of the Riemann 

ζ function on the critical line at increasing heights. 
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1. Intr oduction. Many-bod y localiza tion tha t prohibits thermal equilibra tion of the wave func-
tions has been a core agenda of research in the field of quantum many-body systems, includ-
ing disordered and interacting fermions on a chain [ 1 ]; spin chains with transverse field, pe-
riodical kicks, or disorder [ 2–5 ]; and the Sachdev–Ye–Kitaev model and its deformed, cou-
pled, or sparsed variant [ 6–9 ], to name but a few. In all of the above studies, the “gap ra-
tio distribution,” i.e. the distribution P r (r ) of the ratio of consecuti v e energy le v el spacings
r n = ( E n +1 − E n ) / ( E n − E n −1 ) or ˜ r n = min (r n , r −1 

n ) , initiated by Ref. [ 1 ], has been utilized as a
criterion of (non)ergodicity. This trend is obviously due to its computational advantage that
makes unnecessary the unfolding by the smoothed density of states ρ̄(E ) , over the conventional
distribution P(s ) of le v el spacings s n = ρ̄(E n )(E n +1 − E n ) . Mor e r ecentl y, the use of the ga p ratio
distribution for characterizing spectral transitions extended its reach beyond energy level statis-
tics of many-body or chaotic Hamiltonians, namely towards quantum entanglement spectra of 
reduced density matrices in neural network states [ 10 ] and in quantum circuits [ 11 , 12 ]. 

The random matrix theory of the gap ratio distribution was introduced in Ref. [ 2 ] and has
since been quoted in practically e v ery wor k in these fields including Refs. [ 3–12 ]. There, two
types of approximate expressions for P r (r ) were presented: one from the Wigner-like surmise
(substituting the large- N limit of N × N matrices by 3 × 3 ) for all three Dyson symmetry
classes, P r (r ) ≈ C β (r + r 2 ) β/ (1 + r + r 2 ) 1+3 β/ 2 (β = 1 , 2 , 4) , and another from the quadrature
discretization of the resolvent operator K I ( I − K I ) −1 where K I denotes the integral operator
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 

mailto:nishigaki@riko.shimane-u.ac.jp
https://creativecommons.org/licenses/by/4.0/


PTEP 2024 , 081A01 S. M. Nishigaki 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/8/081A01/7727817 by Shim

ane D
aigaku Fuzokutoshokan user on 24 D

ecem
ber 2024
of convolution with the sine kernel over an interval I for the unitary class β = 2 . Although the
la tter approxima tion is known to converge to the exact value quickly as the quadrature order is
increased [ 13 ], the analytical expression for P r (r ) is still missing. Moreover, the author cannot
help feeling frustrated to find that e v ery article that quotes Ref. [ 2 ] almost always refers only
to the Wigner-surmised form, and calls that crude, uncontrolled approximation the “outcome 
from the random matrix theory.” In view of these, this article aims to determine anal yticall y the
joint distribution of consecuti v e eigenvalue spacings P c (a, b) and the distribution of their ratio
P r (r ) for the unitary class, based on our recent work [ 14 ] which provided a generic prescription
for determining the Jánossy density for any integrable kernel as a solution to the Tracy–Widom
(TW) system of partial differential equations (PDEs) [ 15 ]. 

This article is composed of the following parts: In Sect. 2 we list se v eral facts on the Jánossy
density J 1 (0 ; I ) for the sine kernel, i.e. the conditional probability that an interval I in the
spectral bulk of the GUE contains no eigenvalue except for the one at a designated locus. In
Sect. 3 we follow the prescription of TW and show that the Jánossy density and associated
distributions of consecuti v e eigenvalue spacings and their ratio are anal yticall y determined as
a solution to a system of ordinary dif ferential equa tions (ODEs). As a showcase of the effi-
cacy of our results for characterizing an approach to quantum chaoticity without using ρ̄(E ) ,
in Sect. 4 we contrast them to the distribution of zeroes of the Riemann ζ function on the
critical line at increasing heights. A program for generating the Jánossy density is attached as
Supplementary material . 

2. Jánossy density for the sine kernel. The sine kernel 

K (x, y ) = 

sin (x − y ) 
π (x − y ) 

= 

sin x cos y − cos x sin y 

π (x − y ) 
(1) 

governs the determinantal point process of unfolded ∗ eigenvalues or eigenphases { x i } of ran-
dom Hermitian or unitary matrices of infinite rank N → ∞ , in the spectral bulk [ 16 , 17 ]. From
the very defining property of the determinantal point process that the p-point correlation func-
tion R p (x 1 , . . . , x p ) = E [ 

∏ p 
i=1 δ(x − x i )] is gi v en by det [ K (x i , x j )] 

p 
i, j=1 , it follows that the condi-

tional p-point correlation function 

˜ R p| 1 ( x 1 , . . . , x p | t) = 

E [ δ( x − t) 
∏ p 

i=1 δ(x − x i )] 

E [ δ( x − t)] 
, (2) 

in which one of the eigenvalues is preconditioned at x = t, also takes a determinantal form
det [ ˜ K (x i , x j )] 

p 
i, j=1 governed by another kernel [ 14 ], 

˜ K (x, y ) = K (x, y ) − K (x, t) K (t , t ) −1 K (t , y ) . (3) 

In the case of the sine kernel ( 1 ), its translational invariance allows for setting t = 0 without
loss of generality, so that [ 18 ], 

˜ K (x, y ) = 

1 

π

(
sin (x − y ) 

x − y 

− sin x 

x 

sin y 

y 

)
= 

ϕ( x ) ψ ( y ) − ψ ( x ) ϕ( y ) 
x − y 

, 

ϕ(x ) = 

1 √ 

π
sin x, ψ (x ) = 

1 √ 

π

(
cos x − sin x 

x 

)
. (4) 
∗We adopt a normalization such that the mean eigenvalue spacing is π . 

2/9 
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The transformation of kernels ( 3 ) from K to 

˜ K is associated with a meromorphic SL (2 , R ) gauge
transformation [ 14 ], [ 

ϕ(x ) 
ψ (x ) 

] 

= 

[ 

1 0 

−x 

−1 1 

] [ 

π−1 / 2 sin x 

π−1 / 2 cos x 

] 

, (5) 

on the two-component functions that comprise respecti v e kernels in the right-hand sides of 
Eqs. ( 1 ) and ( 4 ). Accordingly, as stated in Theorem in Ref. [ 14 ], the gauge-transformed sec-
tion [ ϕ( x ) , ψ ( x )] T inherits from the original section [ π−1 / 2 sin ( x ) , π−1 / 2 cos ( x )] T the covariant-
constancy condition for a meromorphic sl (2 , R ) connection, i.e. a pair of linear differential
equations, 

m( x ) 
d 

dx 

[ 

ϕ( x ) 
ψ ( x ) 

] 

= 

[ 

A( x ) B( x ) 
−C( x ) −A( x ) 

] [ 

ϕ( x ) 
ψ ( x ) 

] 

with polynomials m( x ) , A( x ) , B( x ) , C( x ) , 

(6) 

which guarantees applicability of the TW method. In the present case of spherical Bessel func-
tions ( 4 ), the polynomials comprising the connection (Lax operator) 1 

m 

[ 

A B 

−C −A 

] 

are: 

A(x ) = 1 , B(x ) = C(x ) = m(x ) = x. (7) 

Subsequently we shall use their nonzero coefficients, 

α0 = β1 = γ1 = μ1 = 1 . (8) 

We take an interval I = [ a 1 , a 2 ] with a 1 < 0 < a 2 so that the ordered triple (a 1 , 0 , a 2 ) will
serve as three consecutive eigenvalues, and denote by 

˜ K I the integration operator acting on the
Hilbert space of square-integrable functions L 

2 (I ) with convolution kernel ˜ K (x, y ) , 

( ̃  K I f )(x ) := 

∫ 

I 
dy 

˜ K (x, y )f(y ) . (9) 

Then by Gaudin and Mehta’s theorem [ 16 ], the Jánossy density J 1 (0 ; [ a 1 , a 2 ]) [ 19 ], i.e. the con-
ditional probability that the interval I = [ a 1 , a 2 ] contains no eigenvalue except for the one pre-
conditioned at x = 0 , is expressed as the Fredholm determinant of ˜ K I : 

J 1 (0 ; [ a 1 , a 2 ]) = Det ( I − ˜ K I ) = exp 

(
−

∑ 

n ≥1 

1 

n 

Tr ˜ K 

n 
I 

)

= exp 

(
−

∫ 

I 
d x 

˜ K (x, x ) − 1 

2 

∫ ∫ 

I 
d xd y 

˜ K ( x, y ) ˜ K ( y, x ) − · · ·
)

. (10) 

Note that the Jánossy density for a symmetric interval I = [ −t , t ] was previously expressed in
terms of a Painlevé V transcendent, i.e. a special solution to an ODE in t [ 20 ]. Our task in this
article is to extend their result to a generic interval and express J 1 (0 ; [ a 1 , a 2 ]) and an associated
distribution P r (r ) in terms of a system of PDEs in a 1 and a 2 . 

3. TW system. TW [ 15 ] established a systematic method of computing the Fredholm deter-
minant of an integr able integr al kernel whose component functions satisfy the condition in Eq.
3/9 
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( 6 ). The quantities that appear in the TW system [ j, k = 1 or 2], 

R jk = 

˜ K (a j , a k ) + 

∫ 

I 
dx 

˜ K ( a j , x ) ˜ K ( x, a k ) + 

∫ ∫ 

I 
d xd y 

˜ K ( a j , x ) ˜ K ( x, y ) ˜ K ( y, a k ) + · · ·

= ( ( I − ˜ K I ) −1 ˜ K )( a j , a k ) = R k j , 

q j = ϕ(a j ) + 

∫ 

I 
dx 

˜ K (a j , x ) ϕ(x ) + 

∫ ∫ 

I 
d xd y 

˜ K (a j , x ) ˜ K (x, y ) ϕ(y ) + · · ·

= ( ( I − ˜ K I ) −1 ϕ)( a j ) , 

p j = ( ( I − ˜ K I ) −1 ψ )( a j ) , 

u = 

∫ 

I 
d x ϕ(x ) 2 + 

∫ ∫ 

I 
d xd y ϕ( x ) ˜ K ( x, y ) ϕ( y ) + 

∫ ∫ ∫ 

I 
d xd yd z ϕ( x ) ˜ K ( x, y ) ˜ K ( y, z ) ϕ( z ) + · · ·

= 

∫ 

I 
dx ϕ( x )( ( I − ˜ K I ) −1 ϕ)( x ) , 

v = 

∫ 

I 
dx ψ ( x )( ( I − ˜ K I ) −1 ϕ)( x ) , w = 

∫ 

I 
dx ψ ( x )( ( I − ˜ K I ) −1 ψ )( x ) , (11) 

ar e all tr eated as functions of the left and the right endpoints (a 1 , a 2 ) of the interval I . Expand-
ing the definitions in Eqs. ( 10 ) and ( 11 ) in a 1 and a 2 � 1 , the boundary conditions for these
quantities read: 

ln J 1 (0 ; [ a 1 , a 2 ]) = 

a 

3 
1 − a 

3 
2 

9 π
− 2 

(
a 

5 
1 − a 

5 
2 

)
225 π

+ · · · , 

q j = 

a j √ 

π
− a 

3 
j 

6 

√ 

π
−

(
a 

3 
1 − a 

3 
2 

)
a j 

9 π3 / 2 
+ 

a 

5 
j 

120 

√ 

π
+ · · · , 

p j = − a 

2 
j 

3 

√ 

π
+ 

a 

4 
j 

30 

√ 

π
+ 

(
a 

4 
1 − a 

4 
2 

)
a j 

36 π3 / 2 
+ · · · , 

u = −a 

3 
1 − a 

3 
2 

3 π
+ 

a 

5 
1 − a 

5 
2 

15 π
+ · · · , v = 

a 

4 
1 − a 

4 
2 

12 π
+ · · · , w = −a 

5 
1 − a 

5 
2 

45 π
+ · · · , 

(12) 

up to terms of O (a 1 , a 2 ) 6 . Substituting the coefficients ( 8 ) into the TW system of PDEs (Eqs.
(2.25), (2.26), (2.31), (2.32), (2.12)–(2.18), (1.7a) of Ref. [ 15 ]), it takes the following form [below
the pair of indices ( j, k) assumes either (1 , 2) or (2 , 1) ]: 

R jk = 

q j p k − p j q k 

a j − a k 
, 

a j 
∂q j 

∂a j 
= U q j + (V + a j ) p j − (−1) k a k R jk q k , 

a j 
∂ p j 

∂a j 
= −U p j + (V − a j ) q j − (−1) k a k R jk p k , 

∂q j 

∂a k 
= ( −1) k R jk q k , 

∂ p j 

∂a k 
= ( −1) k R jk p k , 

∂u 

∂a j 
= ( −1) j q 

2 
j , 

∂v 
∂a j 

= ( −1) j q j p j , 
∂w 

∂a j 
= ( −1) j p 

2 
j , (13) 

where U = 1 + u − w and V = 2 v . The “stiffness” of the second and the third equations of 
Eqs. ( 13 ) at a j = 0 is only superficial, because q j , p j , and R jk are of O (a j ) or higher orders in
4/9 
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Fig. 1. The Jánossy density J 1 (0 ; [ a 1 , a 2 ]) for the sine kernel (left), and the joint distribution P c (a 1 , a 2 ) 
of two consecuti v e eigenvalue spacings (right). For visual clarity, each coordinate a j is rescaled from the 
text by 1 /π , so that the mean eigenvalue spacing is unity. 
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the limit a j → 0 . We remark that the above PDEs reduce to the ODEs (Eqs. (14), (15), (17))
of Ref. [ 20 ] and V = 0 in the symmetric case, | a 1 | = a 2 = t. The Fredholm determinant ( 10 ) is
expressed by R j j , which is composed of q j and p j (Eqs. (1.3), (1.7b) of Ref. [ 15 ]), 

( −1) j−1 ∂ 

∂a j 
ln J 1 ( 0 ; [ a 1 , a 2 ]) = R j j = p j 

∂q j 

∂a j 
− q j 

∂ p j 

∂a j 
( j = 1 , 2) . (14) 

For numerical evaluation of J 1 (0 ; [ a, b]) , it is practically convenient to start from the initial
condition ( 12 ) at (εa, εb) with a sufficiently small ε > 0 and to integrate the TW system (Eqs.
( 13 , 14 )) in the radial direction ( a 1 (s ) , a 2 (s )) = (sa, sb ) , ε ≤ s ≤ 1 . The resultant system of ODEs
in s , combined from the PDEs through s d ds = a 1 (s ) ∂ 

∂a 1 
+ a 2 (s ) ∂ 

∂a 2 
, reads: 

s 
d 

ds 

[ 

q j 

p j 

] 

= 

[ 

U V + a j 

V − a j −U 

] [ 

q j 

p j 

] 

, 

s 
dU 

ds 
= −a 1 

(
q 

2 
1 − p 

2 
1 

) + a 2 
(
q 

2 
2 − p 

2 
2 

)
, s 

dV 

ds 
= −2 a 1 q 1 p 1 + 2 a 2 q 2 p 2 , 

s 
d ln J 1 

ds 
= a 1 

(
q 

2 
1 + p 

2 
1 

) − a 2 
(
q 

2 
2 + p 

2 
2 

) − ( q 1 p 2 − p 1 q 2 ) 
2 + 2 U ( q 1 p 1 − q 2 p 2 ) 

− V 

(
q 

2 
1 − p 

2 
1 − q 

2 
2 + p 

2 
2 

)
. (15) 

Note that the form of the first line of Eq. ( 15 ) is directly inherited from Eqs. ( 6 ) and ( 7 ).
It is quite plausible that the ODEs ( 15 ) can be expressible as a Hamiltonian system, and
J 1 (0 ; [ a 1 , a 2 ]) be regarded as a τ -function of an integrable hierarchy [ 21 ]. Howe v er, these are
not immediately evident to the author, and will be discussed in a separate publication. As a
cross-check of our formulation, we confirmed that the values of J 1 (0 ; [ a 1 , a 2 ]) obtained by the
above prescription (Fig. 1 , left) are identical, within the accuracy of numerical evaluation, to
those from the Nyström-type quadrature approximation of the Fredholm determinant [ 13 ], 

Det ( I − ˜ K I ) 
 det 
[
δi j − ˜ K (x i , x j ) 

√ 

w i w j 
]m 

i, j=1 , (16) 

where { x i , w i } m 

i=1 is the m -th order quadra ture of the interval I such tha t 
∑ m 

i=1 w i f(x i ) 
m →∞−→ ∫ 

I dx f(x ) , with a sufficiently large m . Specifically, relati v e de viations of J 1 (0 ; [ a 1 , a 2 ]) com-
puted by the TW system ( 15 ) starting from the initial value ε = 10 

−10 using Ma thema tica’s ND-
Solve package with WorkingPrecision → 5 MachinePrecision , and tha t evalua ted by
5/9 
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Fig. 2. The distribution of the ˜ r -ratio, ˜ r = min (| a 1 | , a 2 ) / max (| a 1 | , a 2 ) . 
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the Nyström-type approximation ( 16 ) with the Gauss–Legendre quadrature of order m = 200 ,
do not exceed 10 

−27 for the whole range of variables | a j | ≤ 10 , and < 10 

−19 for | a j | ≤ 20 . Inter-
ested readers are invited to verify this statement by running the Notebook Janossy_TW_N.nb
included in the Supplementary materials . 

Various probability density functions follow from the Jánossy density: The le v el spacing dis-
tribution P(s ) [ 16 ], the distribution for the nearest neighbor le v el spacing P nn (t) [ 20 ], and the
joint distribution for the two consecuti v e le v el spacings P c (a 1 , a 2 ) [ 2 ] are gi v en by 

P(s ) = −dJ 1 (0 ; [0 , s ]) 
ds 

, P nn (t) = −dJ 1 (0 ; [ −t, t]) 
dt 

, P c (a 1 , a 2 ) = −∂ 2 J 1 (0 ; [ a 1 , a 2 ]) 
∂ a 1 ∂ a 2 

, 

(17) 

respecti v ely (Fig. 1 , right). Finally, the distribution P r (r ) for the ratio r = | a 1 | /a 2 of the two
consecuti v e le v el spacings is gi v en by [ 2 ], 

P r (r ) = 

∫ ∞ 

0 
d a 2 

∫ 0 

−∞ 

d a 1 P c (a 1 , a 2 ) δ(r − | a 1 | /a 2 ) = 

∫ ∞ 

0 
da a P c (−ra, a ) . (18) 

If we switch the variable from r to ˜ r := min (| a 1 | , a 2 ) / max (| a 1 | , a 2 ) = min (r, r −1 ) ∈ [0 , 1] , its
distribution is twice the above P r (r ) (Fig. 2 ), yielding the expectation values for its moments, 

E [ ̃  r k ] = 2 

∫ ∞ 

0 
d a 2 

∫ 0 

−a 2 
d a 1 P c (a 1 , a 2 ) ( | a 1 | /a 2 ) 

k 

= 0 . 5997504209( 1) , 0 . 4132049292( 1) , 0 . 3100223500( 1) , 0 . 2460560527( 1) 

( k = 1 , 2 , 3 , 4) . (19) 

4. Zeroes of the Riemann ζ function. As a showcase of application of our analytic results
to the judgement of quantum chaoticity, we compare them to (arguably) the most ideal of all
quantum-chaotic spectra: the sequence of zeroes of the Riemann ζ function on the critical
line, { 1 2 + iγn } . Their imaginary parts are supposed to be the eigenvalues of the hypothetical
self-adjoint Hilbert–Pólya operator [ 22 ]. Extensi v e computational and analytic number the-
ory studies since Montgomery’s pair correlation conjecture [ 23 ] have fruited in conviction that
such an operator, if interpreted as a Hamiltonian, should be ergodic and possess no antiu-
nitary convoluti v e symmetry, i.e. belong to the unitary uni v ersality class of random matrices
[ 24 , 25 ]. After unfolding by the Riemann–von Mangoldt f ormula f or the asymptotic density
6/9 
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Fig. 3. The joint distribution P c (δ−, δ+ 

) of two unfolded consecuti v e spacings δ± = ρ̄( γn )( γn ±1 − γn ) of 
10 

8 zeroes of the Riemann ζ function { 1 2 + iγn } around n 
 1 . 037 · 10 

11 (left), and the distributions of 
the ratios r n = ( γn +1 − γn ) / ( γn − γn −1 ) (right) and ˜ r n = min (r n , r −1 

n ) (right, inset). Histograms from the 
Riemann zeroes (black tiles and dots) are plotted versus the analytical results (Figs. 1 and 2 ) for the GUE 

(orange surface and curves). 

Table 1. Moments of ˜ r n for the Riemann zeroes. 

N γN 

〈 ̃  r n 〉 〈 ̃  r 2 n 〉 〈 ̃  r 3 n 〉 〈 ̃  r 4 n 〉 
10 

8 4 . 265354 · 10 

7 0.6032357 0.4168926 0.3133507 0.2489623 

10 

9 3 . 718702 · 10 

8 0.6021928 0.4158748 0.3125019 0.2482868 

10 

10 3 . 293531 · 10 

9 0.6014386 0.4149925 0.3116161 0.2474310 

103700788358 3 . 058187 · 10 

10 0.6010277 0.4145862 0.3112812 0.2471641 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/8/081A01/7727817 by Shim

ane D
aigaku Fuzokutoshokan user on 24 D

ecem
ber 2024
of zeroes, ρ̄(γ ) = 

1 
2 π log 

γ

2 π , the histogram P c (δ−, δ+ 

) of two unfolded consecuti v e spacings
δ± = ρ̄( γn )( γn ±1 − γn ) of 10 

8 zeroes ending at n = 103800788359 (the largest zero available at
the L-functions and modular forms database [ 26 ]) perfectly agrees with the GUE result ( 17 ),
as visualized in Fig. 3 (left). Moreover, had we not known the classical f ormula f or ρ̄(γ ) a pri-
ori, the perfect match to the GUE could still be deduced from the distributions of the ratios
of consecuti v e spacings of zeroes r n = ( γn +1 − γn ) / ( γn − γn −1 ) and ˜ r n = min ( r n , r −1 

n ) (Fig. 3 ,
right). Indeed, this observation has been reported in Fig. 4 of the original article [ 2 ] that in-
spired this work. Equipped with the high precision of the moments of ˜ r attained by our an-
alytic derivation of P c (a 1 , a 2 ) , we can now revisit the rather crude observation of Ref. [ 2 ] and
improve it to the le v el of quantifying the systematic convergence of the distribution of the
˜ r -ratios of the Riemann zeroes to the GUE result ( 18 ). Mean values of the moments of ˜ r n 
in four windows of zeroes [ γN 

, γ1 . 001 N+1 ] for N = 10 

8 , 10 

9 , 10 

10 , and 103700788358 are sum-
marized in Table 1 . As the height γN 

incr eases, r elati v e de viations from Eq. ( 19 ), 〈 ̃  r k n 〉 / E [ ̃  r k ] −
1 , are indeed observed to vanish systematically from above, heuristically in proportion to
ρ̄(γN 

) −3 , indicating an approach to complete quantum chaoticity in the “thermodynamic limit”
γN 

→ ∞ (Fig. 4 ). 
We remark that the systematic deviations of the statistics of the Riemann zeroes from the

GUE (at infinite N) were previously studied in Refs. [ 27–29 ]. There, the “finite-size corrections”
in various statistical distributions for the Riemann zeroes wer e r eported to agree well with those
7/9 
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Fig. 4. Relati v e de viations of the moments of the ˜ r -ratio 〈 ̃  r k n 〉 (k = 1 , . . . , 4) in four windows of the Rie- 
mann zeroes { 1 2 + iγn } , n ∈ [ N, 1 . 001 N + 1] for N = 10 

8 , 10 

9 , 10 

10 , and 
 10 

11 , from the GUE results 
E [ ̃  r k ] , plotted versus ρ̄(γN 

) −3 . Error bars r epr esent sta tistical fluctua tions due to an arbitrary choice of 
windows, estimated by the Jackknife method of splitting each data set into 10 bins. Dotted lines are 
linear fits with the least χ2 for each set of four points in the same color. 
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for the circular unitary ensemble (CUE) at finite N eff ≈ 1 . 446124 · ρ̄(γN 

) . The relationship be-
tween these observations and our finding above will need to be clarified. 

Supplementary materials 
Janossy_TW_N.nb : Ma thema tica Notebook for generating J 1 (0 ; [ a 1 , a 2 ]) anal yticall y by the
TW system (Eqs. ( 15 ) and ( 12 )) or numerically by the Nyström-type approximation ( 16 ). 
Janossy_Sin.dat : numerics of J 1 (0 ; [ a 1 , a 2 ]) in the range (a 1 , a 2 ) ∈ [ −20 , 0] × [0 , 20] , pro-
vided upon request by email. 
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